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Abstract: Ontic is an interactive system for developing and verifying math-
ematics. Ontic's verification mechanism is capable of automatically finding
and applying information from a library containing hundreds of mathemati-
cal facts. Starting with only the axioms of Zermelo-Fraenkel set theory, the

-" Ontic system has been uzced to build a data base of definitions and lemmas
leading to a proof of the Stone representation theorem for Boolean lattices.
The Ontic system has been used to explore issues in knowledge representa-

*tion, automated deduction, and the automatic use of large data bases.
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:.::Chapter 1
.

:o: Ontic in Brief

"-S

¢": Ontic is a computer system for verifying mathematical arguments. Starting
-% with the axioms of Zermeto-Fraenkel set theory, including Zorn's lemma a-s

a version of the axiom of choice, the Ontic system has been used to to define

-a

concepts involving partial orders and lattices and to verify a proof of the
I Stone representation theorem for Boolean lattices. This theorem involves an

:ultrafilter construction and issimilar incomplexity tothe Tychonoffthoe

Onti in Briefore

~in topology which states that an arbitrary product of compact spaces is

~compact. The individual steps in the proof were verified with an automated
theorem prover. The Ontic theorem prover automatically accesses a lemma
library containing hundreds of mathematical facts; a more facts are added
to the system's lemrna library the system becomes capable of verifying larger
inference steps.

The Ontic theorem prover is based on what I call object-oriented in-
ference. Object-oriented inference is a forward chaining inference process
applied to a large lemma library and guided by a set of focus objects. The
focus objects are ternis in th e roof wist order predicate calculus; they
are expressions which denote objects. It is well known that unrestricted for-
ward chaining stating with a large lemma library leads to an immediate
combinatorial explosion. However, the Ontic theorem prover is gtided by

Sthe focus objects; the inference process is restricted to statements that are,

in a technical sense, about the focus objects. Thus the inference process

w"*

Sa'.

a r xrsin hc ent bet.IOswl nonta netitdfr
* .wr hiigstrigwt agelmalbaylad oa meit

v-" ' ' ," combinatorial " ," ,explosion""." " ,' "", ,,' . Oni theorem prover ,, is' guided ,,,. by ,. " J"".



CHAPTER 1. ONTIC IN BRIEF

is "object-oriented", In verifying an argument the user specifies the set of
focus objects. For example the user may tell the system to consider an ar-
bitrary lattice L_ an arbitrary subset S of L, and an arbitrary member x
of S. Ontic's inference mechanisms are restricted to a finite set of formulas
that are about the given focus objects. Certain forward chaining constraint

* p:opagation techniques can be effectively applied to this finite set of formu-
las. Natural language mathematical arguments, like those found in textbooks
and journals, appear to be object-oriented in the sense that they instruct the

* reader to focus on certain objects. Thus Ontic's object-oriented inference
mechanisms seem well suited for verifying natural arguments.

'"

There are two motivations for building a system for verifying natural
arguments. First there is an engineering motive: a sufficiently powerful me-

C chanical verifier could have a variety of important practical applications,
--t such as ensuring the correctness of mathematic J arguments, the correctness

of software systems, and the correctness of engineered devices in general. Sec-
ond, the construction of a verification system for natural arguments can be
motivated in terms of cognitive psychology. A verification system for natural
arguments provides a computational model of the human cognitive processes
involved in verifying arguments. The plausibility of such cognitive model
can be judged by comparing the length and structure of the arguments ac-
ceptable to people with the length and structure of arguments acceptable to
the cognitive modei.

The engineering mo9*-e and the cognitive model motive for building ver-
ification systems are ret independent; a verification system that is a good
cognitive model is iikely to be pragmatically useful. More specifically, a
verification system is a good cognitive model to the extent that arguments
acceptable to the model are similar to the arguments accepteble to people.
Thus if a verification syatem is a good cognitive model then it should be easy
to convert arguments that are acceptable to people to arguments that can
be verified by the system; a system that is a good cognitive n: iel provides
a good "impedance match" between the human ,ser and the verification

,t system.

S. On the other bard the two motiv'ations for verificati, as system, the en-
gineering motive and the cognitive model motive, are di lerent motivations

e V V
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* with different criteria for success. A verification system that exhibits clearly
*i superhuman performance in its ability to verify statements is a bad cogni-

tive model but a good verifier from an engineering point of view. It turns
out that Ontic's mechanism for reasoning about equality, congruence closure,
leads to some clear examples of superhuman performance on the part of the
Ontic system. Thus congruence closure is not a good cognitive model for the
way people reason about equality-there are equality reasoning mechanisms

. which are weaker than congruence closure which provide better cognitive
models. However, from an engineering point of view congruence closure is
better than the weaker mechanism (at least on serial machines). The anal-
ysis of congruence closure as a bad cognitive model is presented in detail in

Q. chapter 3.

The Ontic system was designed with both motivations in mind-an at-
tempt was made to make the system a pragmatically effective verification
system and the same time to make the system a rough model of human math-
ematical cognition. The Ontic system should be judged on two independent
grounds relative to these two goals. First, one can evaluate the system as
an engineered device for verifying proofs by attempting to use the system
for that purpose. Second, one can attempt to evaluate the system as a cog-
aitive model by judging the similarity between natural language arguments

. acceptable to people and formal arguments acceptable to the system.

The remainder of this chapter is divided into four sections. The first
sect-on briefly discusses the nature of natural language mathematical argu-
ments. The second section of the chapter discusses the formal language used

Yi ,in the Ontic system. The third section describes the user-level interface to the
system and gives several examples of arguments verified by the system. The
fourth section describes the object-oriented inference mechanisms in more
detail.

The relationship between Ontic and previous work in reasoning, knowl-
edge representation, and theorem proving is discussed in detail in chapter 2.Chapter 3 presents an analysis of the Ontic system as a cogn'tive model giv-

ing examples of both superhuman and subhuman performance on the part of
the Ontic system. Chapters 4 and 5 give a mathematically precise account of
the inference mechanisms as marker propagation algorithms on certain kinds

Pb.

0.



"., 4 CHAPTER 1. ONTIC fY BRIEF

of graph structure. Chapter 6 gives a mathematically precise definition of the
Ontic formal language and chapter 7 gives a mathematically precise account
of the compilation process by which expressions in the formal language are
converted into graph structure. Chapter 8 lists some potential applications
of automated inference systems such as Ontic and chapter 9 summarizes the
main features of the Ontic system.

1.1 The Nature of Natural Arguments

By a "natural mathematical argument" I mean a proof written in a natural
language, such as English, that would be acceptable as a fully worked out
proof in a textbook or journal article. A natural mathematical argument

- consists of a sequence of natural language statements and the human reader
is expected to use his or her knowledge and intelligence to see that each step
clearly and necessarily follows from the previous steps. As an example of a
natural argument consider the following proof that the square root of 2 is
irrational.

Suppose that the square root of two were rational, i.e.

2

The squares p2 and q2 must each have an even number of prime
. d",factors. Thus, if p2/q 2 is an integer then this integer must also

have an even number of prime factors. But 2 has only a single
prime factor so p2/q 2 cannot equal 2.

This argument is perfectly rigorous; every step clearly follows from the
previous steps and the conclusion is clearly established; V/ must be irra-
tional. However, understanding this argument requires knowing certain facts
about arithmetic and multisets. More specifically the above argument im-
plicitly rests on the following facts:

a.
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1.1. THE NATURE OF NATURAL ARGUMENTS 5

1. The fundamental theorem of arithmetic - every natural number has
a unique multiset of prime factors.

2. The multiset of factors of p2 is the multiset union of the prime factors
of p with itself.

- 3. The multiset union of a multiset with itself has an even number of
members (an even multiset cardinality).

4. If p/q is an integer then the multiset of prime factors of q must be a
subset of the multiset of prime factors of p.

5. If p/q is an_ integer then the multiset of prime factors of p/q is the
multiset difference of the prime factors of p and the prime factors of q.

6. If the multisets ml and m2 both have an even number of members and
'' rM2 is a subset of m, then the multiset difference of m, and m 2 has an

even number of members.

The fundamental theorem of arithmetic is a deep theorem involving sev-
eral induction proofs. It seems quite likely that people have simply memo-
rized this fact and use it freely. The other facts in the above list have simpler
proofs (given the fundamental theorem of arithmetic). However, an explicit

u'. proof of any one of the above facts would be at least as long as the above
A: proof that the square root of 2 is irrational. Furthermore, each of the above

facts seems to be generally useful and thus it seems likely, or at least plau-
sible, that people have memorized each of the above facts in addition to the
fundamental theorem of arithmetic. People seem capable of using facts, such
as the fundamental theorem, unconsciously; when reading the above naturai

Pargument one is not consciously aware of using the fundamental theorem of
aritbmetic. The above example suggests that people verify mathematical ar-
guments by using knowledge they already have about the concepts involved
and by applying that knowledge unconsciously in verifying the steps of the

argument.

.

A0.
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6 CHAPTER 1. ONTIC IN BRIEF

1.2 Ontic as a Formal Language

The Ontic system cannot read natural language-before an argument can
be verified it must be translated into a machine readable form. The Ontic
system manipulates formulas in the formal language called Ontic. The Ontic
language is a syntactic sugar for first order set theory. The design of this
syntactic sugar was driven by two motivations. First, the language is designed
to be as similar as possible to natural language while still being simple and
mathematically precise. Most atomic formulas in the Ontic language consists
of a subject "noun phrase" and a predicate "verb phrase". In addition to
being similar to natural language, the syntactic structure of the Ontic formal
language facilitates the object-oriented inference mechanisms used in the
system. Object-oriented inference is guided by a set of focus objects. The

4inference mechanisms "type" the focus objects-the system assigns a set of
types to each focus object. In the Ontic system a type is any predicate of one
argument; the types assigned to a focus object are predicates that are known
to be true of that object. The syntax of the Ontic language is designed to
facilitate this typing process; must atomic formulas state that a particular
type applies to a particular object.

In the Ontic language there is no distinction between types, classes, sorts,

and predicates of one argument. For an object z and type r the phrases "r
contains x", "x is an instance of r" and "r is true of x" all mean the same
thing. The word type is used, as opposed to the word class or predicate,
because Ontic types are used in much the same way that types are used
in computer programming languages; functions in the formal language can
only be applied to arguments of the appropriate type and thus there is a
distinction between "well-typed" and "ill-formed" expressions. For example,
consider a function TOPOLOGICAL-CLOSURE such that if X is a topological
space and A is a subset of X then

(TOPOLOGICAL-CLOSURE A X)

4 •denotes the topological closure of A as a subset of X. An application of the
operator TOPOLOGICAL-CLOSURE is well typed just in case its second argument
denotes a topological space and its first argument denotes a subset of that

--.



1.2. ONTIC AS A FORMAL LANGUAGE

space. The above expression is well typed but the expression

(TOPOLOGICAL-CLC-UAE X A)

that results from reversiug the arguments is nct well typed because A is not
a topological space and X need not be a subset of A.

Rather than give a rigorous syntax and semantics for the Ontic language,
this section discusses the language informally and largely by example. A more

* rigorous treatment is presented in chapter 6. Every expression of the Ontic
language belongs to exactly one of five syntactic categories; an expression
is either a term, a formula, a function expression, a type expression, or a
t_.ype generator expression. Terms are expressions that denote objects.' A
formula is an expression which denotes one of the Boolean truth values true
or false.2 A function expression denotes a mapping from objects to objects.
Etch function expression takes a fixed number of arguments and returns an
object.3 Type expressions are predicates of one argument. 4 A type generator
expressiou denotes a mapping from objects to types. Each type generator
expression takes a fixed number of arguments and returns a type. 5

,1E

1.2.1 Types

Figure 1.1 lists some type expressions. The first five type expressions in figule
1.1 are type symbols. The types THING and SET are primitive type symbols
in the Ontic system. The Ontic system allows for the possibility that there
are instances of the universal type THING, such as symbols, which are not in-
stances of the type SET. Each of the typ-s GROUP, TOPOLOGICAL-SPACE, and

4 RIEI4ANNIAN-MANIFOLD can be defined in terms of more primitive concepts.

'A term is an expression of kind OBJECT. It is consistent with axioms of the logic to
assume that all objects are actually sets in a standard model of ZFC set theory. However,
it is more natural, and equally consistent, to assume that there exist objects which are
not sets.

o! 2A formula is an expression of kind BOOLEAN.3Function expressions have kind OBJECT x OBJECT x ... x OBJECT --- OBJECT.
4 Type expressions have kind OBJECT - BOOLEAN.
'Type generator expressions have kind OBJECT x OBJECT x ... x OBJECT - TYPE.

I

.4
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THING, SET, GROUP, TOPOLOGICAL-SPACE, RIEMANNIAN-MANIFOLD

(MEMBER-OF s), (LOWER-BOUND-OF s p)

(LAMBDA ((x r)) I'(x))

(EITHER x y)

(AND-TYPE r r2)

(OR-TYPE r1 r 2)

: Figure 1.1: Ontic Type Expressions

TLe next two type expressions are types that result from applying type gen-
erators to arguments. If a term s denotes a set then (MEMBER-OF s) is a type

expression such that an object is an instance of the type (MEMBER-OF s) just
in case itis a member of the set . Instances of the type

(LOWER-BOUND-OF s p)

t. are metal rs of the partially ordered set p which are lower bounds of the
subset s of p. One place lambda predicates are also type expressions. The

instances of the type
: (LAMDA ( (x -r) ) t(.T))

consist of exactly those instances z of the type r which satisfy the formula
*(x). The type (EITHER X Y) contains only the instances X and Y. The type
(AND-TYPE -r r2 ) contains exactly those objects which are instances of both
the types rl and r1. The type (OR-TYPE Tj r2) contains exactly those things
which are instances of either of the types r" or -r2.

% 1.2.2 Terms

Figure 1.2 gives some Ontic terms. There are several ways of constructing
terms in Ontic. The application of a function to arguments is a term. If r

8The term s denotes an object while the expression (MENBER-0F s) denotes a type; no
expression is allowed to be both a term and a type.

_.,l

6
-,



1.2. ONTIC AS A FORMAL LANGUAGE

(fun xL X2 ...)

(THE-SET-OF-ALL r)

(THE -RULE fun)

(IE r)
i ' symbol

Figure 1.2: Ontic Terms

is a "small" type expression then the expression (THE-SET-OF-ALL 7) is a
. term which denotes the set of all instances of r. The process of converting a
* type to a set is called reification and sets of the form

,'. (THE-SET-OF-ALL r)

i- ale often called reified types. It is important to remember that there is a
syntactic distinction between terms (which denote objects) and type expres-
sions (which denote predicates). There are types, sucb as the type THING,
which can not be converted to sets-there is no set of all things. Most of the
axioms of Zermelo-Fraenkel set theory state that certain sets exist. One can
view these axioms as saying that certain types can be converted to sets. In
the Ontic system these axioms of set theory are incorporated intc the notion
of a syntactically small type expression; the operator THE-SET-OF-ALL can

N. only be applied to syntactically small type expressions. The notion of a syn-
tactically small type expression, and the relation between this notion and the

N: axioms of set theory, are discussed in more detail in chapter 6, section 6.1.

0y If fun is a function of one argument then the term (THE-RULE fun) de-
-44 notes the "rule" that corresponds to the function. The relationship between

functions and rules is analogous to the relationship between types and sets-
the expression (THE-RULE fun) is a term and denotes an object while fun
is a function expression. Expressions of the form (THE-RULE fun) are often

W referred to as reified functions. There exist functions which can not be reified
as rules, e.g any function defined on all sets, such as the function that maps
an arbitrary set to its power set, is too big to be reified as a rule.

A4



10 CHAPTER I. ONTIC IN BRIEF

If r is a type with exactly one instance then the expression (THE r) is a
term which denotes the single object contained in the type. For example, if

(PRIME-NUMBER-BETWEEN n m)

is a type whose instances are the prime numbers between n and m then

(THE (PRIME-NUMBER-BETWEEN 20 25))

denotes the number 23.

Expressions of the form 'symbol ar,. also terms. For example the expres-
sion ' FOG denotes the symbol FOG. Quoted symbols denote objects which are
instances of the type SYMBOL. The Ontic system allows for the possibility
that all objects are sets, i.e. that every object is an element of a model of
Zermelo-Fraenkel set theory. However, the Ontic system also allows for a
more natural interpretation under which rules and symbols are not sets-the

types SET, RULE, and SYMBOL can be assumed to be disjoint.

1.2.3 Formulas

Figure 1.3 gives some Ontic formulas. The formula (IS x r) is true just in
case x denotes an instance of the type r. Formulas of this form are intiuitively
pleasing because they seem to reflect natural language syntax-x is a subject
"noun phrase" and the type r is a predicate that applies to the subject. The

formula (EXISTS-SOME r) is true just in case there exists an instance of r.
The formula

< ~(EXISTS ((l 7) Ux2 2) ... ) N(X, X2,..)

is true just in case there exists instances a,, a2 ... an of the types r1 , r2,.. .3

respectively such that such that 4 is true when the variables x1, X2,... xn are
interpreted as ai, a2 ... a, respectively. The formula

: ~(FO M.LL ((xi r) (U2 TO ... ) D(Xl, X2,..)

has the obvious analogous meaning. The formula (EXACTLY-ONE r) is true

just in case there is exactly one instance of the type r. The formula

(IS-EVERY T- r2)

-_
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(IS zr)
:I.

(EXISTS-SOME r)

(EXISTS ((xI 71) (U2 T2 ) ... ) (li. X2, -.)
. (FORALL ((xl 71) (x2 -r2) ... ) (x,, x2 . ..)

(EXACTLY-ONE 7)

(IS-EVERY 7, 72)

(NOT ))
(AND 4', 02)

Figure 1.3: Ontic Formulas

is true just in case every instance of r, is an instance of r2. Of course Boolean

combinations of formulas are also formulas.

1.2.1 Definitions

Figure 1.4 gives some examples of definitions of functions and type gener.
ators. Functions are defined with the DEFTERM construct as shown in the
first example. In the first example the functioni POWER-SET is defined to be

_N., equivalent to the lambda function

% (LAMBDA ((S SET)) (THE-SET-OF-ALL (ZUBSET-OF S)))

&%Thus the function POWER-SET takes one argument which must be a set and
4 -re+urns the set of all subsets of that set. Types and type generators are
.. defined with the DEFTYPE construct. The second definition in figure 1.4 de-
$ fines LOWER-BOUND-OF to be a type generator which takes two arguments: a

set s and a poset p where the set s is required to be a subset of the set of
elements of p. The type generatcr LOWER-BOUND-OF takes these arguments
and returns a type: a predicate of one argument. An object x is an element
of the type (LOWER-BOUND-OF s p) just in case x is an element of the un-

N" derlying set of the poset p and every member of the set s is greater than or

SA

%.
aj

I



12 CHAPTER 1. ONTIC IN BRIEF

(DEFTERM (POWER-SET (S SET))
(THE-SET-OF-ALL (SUBSET-OF S))

* .~.(DEFTYPE (LOWER-BOUND-OF
(S (SUBSET-OF (U-SET PM)
(P POSET))

*0 (LAMBDA ((X (MEMBER-OF (U-SET P))))
(IS-EVERY (MEMBER-OF S)

(GREATER-OR-EQUAL-TO X P))))

(DEFTYPE (GREATEST-LOWER-BOUND-OF
(S (SUBSET-OF (u-SET PM)
(P POSET))

(LAMBDA ((X (LOWER-BOUND-OF S PM)
(IS-EVERY (LOWER-BOUND-OF S P)

(LESS-OR-EQUAL-TO X P))))

(DEFTYPE COMPLETE-LATTICE
(LAMBDA ((P POSET))

45 (FORALL ((S (SUBSET-OF (U-SET P)
(EXISTS-SOME (GREATEST-LOWER-BOUND-OF S Pl)))))

* iigure 1.4: Some Ontic Definitions
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equal to x under the ordering imposed by the poset p. The type generator
GREATEST-LOWER-BOUND-OF is similar to LOWER-BOUND: it takes a set s and a

poset p where s is a subset of the underlying set of p and yields a type. An
object x is an element of the type (GREATEST-LOWER-BOUND-OF s p) just in
case x is a lower bound of s in the poset p and every lower bound of s in p

is greater or equai to r. The type COPLETE-LATTICE is defined so that an
object p is of type COMPLETE-LATrICE just in case p is a poset such that for

every subset s of the underiying set of p there exists a greatest lower bound
of s under the ordering imposed by p.

The type restrictions on the formal parameters of functions and type
generators determine a distinction between well-typed and ill-formed expres-
sions. The Ontic system will not invoke the definition of a function or type
generator unless the arguments to the function or type generator have been
proven to be of the correct type; the Ontic system effectively type-checks
expressions before it expands definitions. Given the expressive power of the
Ontic type system, however, one can easily show that there are well-typed
expressions which fail to type check. In the Ontic system type checking in-
volves theorem proving based on a lemma library. Many of the lemmas of the
lemma library state that certain objects have certain types; not surprisingly,
such lemnas play an important role in determining if an expressinn is well

typed. It is often the case that a given expression fails to type check using
one lemma library but succeeds in type checking given a stronger lemma
library.

1.2.5 Summary

_ In addition to providing a distinction between well-typed and ill-formed ex-
pressions, the Ontic type vocabulary seems to allow for concise and natural
formal statements. For example the IS-EVERY phrase constructor allows the

8 concise expression of statements that would normally require explicit quan-

tification. Similarly, the EXISTS-SOME phrase constructor uses the type vo-
0 cabulary to make concise existential statements. Types are also used directly

by the phrase constructors THE-SET-OF-ALL, THE, and EXACTLY-ONE.

The definitions in figure 1.4 sheuld provide an indication of the con-

,B
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ciseness and expressive power of the Ontic language. Jonathan Rees spent

j.. about a month defining various mathematical concepts in Ontic. Starting
with onlv the fundamental notions described above, he used the Ontic lan-
guage to formally define groups. rings, ideals in a ring, fields, the natural

S- numbers. the real numbers (defined both as a totally ordered complete field
and as Dedekind cuts), topological spaces. continuous functions. homotopy
of maps between topological spaces, the fundamental group of a topological
space, differentiable functions on the reals, the derivative of a function, the
notion of a category and products and limits in arbitrary categories. The ease
with which Rees expressed these concepts suggests that any mathematical
ccncept can be readily expressed in Ontic.

1.3 Examples of Verification

Object-oriented inference operates in a context. A context consists of three
things: a lemma library, a set of focus objects and set of suppositions about
the focus objects. Figure 1.5 gives a block diagram of the object-oriented
inference mechanisms used in the Ontic system. The inference process is
forward chaining; it draws conclusions from the lemma library without being
given any goal formula. It is well known that unrestricted forward chaining
from a large lemma library leads to an immediate combinatorial explosion
- vast numbers of formulas are generated where each formula can be de-
rived from the given lemmas in only a few steps. The forward chaining
inference mechanisms used in the Ontic system, however, are guided by the
focus objects. The focus objects are Ontic terms, expressions that denote ob-
jects. The system restricts its inference process to formulas that are in some
sense "about" the focus objects. There are four basic inference mechanism:.:

* Boolean constraint propagation, congruence closure, focused binding (also
called semantic modulation), and automatic universal generalization. The

* first two inference mechanisms are well known inference procedures for the

* .quantifier-free predicate calculus with equality. The last two inference mech-
anisms are unique to the Ontic system. These four inference mechanisms are
discussed in section 1.4 and again in more detail in chapters 4 and 5. In a
given context the four forward chaining inference mechanisms generate a set
of formulas about the focus objects called "obvious truths".

S-'
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Boolean Constraint Propagation

Lemma Library

Congruence Closure

Focus Objects

Focused Binding

Suppositions

Automatic Universal Generalization

*) Obvious Truths

Figure 1.5: A Block Diagram of Object-Oriented Inference

. ........
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(let-be F family-of-sets)

(let-be S set)

(suppos, (is-everU (member-of F) (superset-of Sill

Ontic Staeck
3(SUPPOSE (1S-1YEnY (REMnO[-OF F) (SUPERSET-OF SM))

1 = = . . i iL U. ' "- 
( L E T - B E S "S E T )- "

- " ~IM(ET-09 F FAMIZLY-OF-SETS)

-VVU 
N1

IIIsI I i
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i iiI I I I]|III
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The Ontic interpreter is an interactive system for verifying proofs. Each

*, step in an argument is associated with a context, i.e. a set of focus objects,
a set of suppositions about the focus objects and the current lemma library.
The user tells the system when to enter new contexts, when to leave old
contexts. and when to "note" a fact that has been established in a given
context. Figure 1.6 shows the display of the Ontic interpreter as seen by a
user who is about to verify a fact concerning families of sets. The top half of

r'' the display is a Lisp listener: a window for interacting with a Lisp interpreter.
The bottom half of the display shows the context stack which displays the
set of suppositions and focus objects for the current context. In the example
shown in figure 1.6 the user first instructs the system to let F be a family of

e sets. This caused the system to enter a context in which it is focusing on an
arbitrary family of sets denoted by F. The user then instructs the system to
let S be any set. This causes the system to enter a context where it is focusing
on an arbitrary set S. Finally the user instructs the system to suppose that
every set in the family F is a superset (i.e. contains) the set S. Each time
a new context is entered, the instruction for entering that context is pushed
onto the context stack shown in the bottom half of the display. By looking
at the context stack display one can determine the set of focus objects and
suppositions that are currently active.

Figures 1.7 through 1.13 show successive stages in the verification of a

simple fact concerning families of sets. Let F be a family of sets, let S be
a set and suppose that every member of the family F contains the set S.

Figures 1.7 through 1.13 present an argument showing that the set S must
be a subset of the intersection of the members of the family F. Figure 1.7
shows the definition of the function FAMILY-INTERSECTION which takes a
family cf sets and returns the intersection of all its members. In Figure 1.7
the user asks the system to abbreviate the term (FAMILY-INTERSECTION F)

• with the symbol INT. This causes the intersection I'T to become a focus

object. The user then asks the system if the set S is a subset of INT and
the system says it doesn't know. The user then states that the formula
(IS S (SUBSET-OF INT)) is a goal to be proven. This last instruction has
no effect on the context; the system is not goal directed and ignores goals

.V which appear on the context stack. Goals act as comments which improve

,: the readability of proofs (the written form of proofs will be discussed later).

A'O ,,, n,", . q. - - - . , "z ,-.- " " . - . r , € ," .- r¥ - ,.. *-, l . '-'.ol d~ g ,2, € 
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(defter@ (framily-intersection (F faeily-of-sets)),.
.,, (the-let-of-al i,

(lambda ((x (member-of-member F)))
(is-every (member-of F) (set-containing x)))))

DEFINING FAflILY-INTERSECTION
EONTIC:OEFINED-FUNCTION-SY BOL FAMILY-INTERSECTION] A
(let-be INT (family-intorsecti~n F))

(is? S (subset-of INT))
I-DONT-KNOM

(push-goal (it S (subset-of INT)))

',

On tic Liscrener

Ontic St;ack
5 (PUSH-GOAL (IS S (SUBSET-OF INT))) I
4 (LET-BE INT (FANILY-INTERSECTION F))

3 (SUPPOSE (MS-EVERY (MENBER-OF F) (SUPERST":OF S))) .

2 (LET-BE 5 SET)
I (LET-BE F FAMILY-OF-SET$) 1..

Figure 1.7: Statement of a New Lemma to be Proved

x4

0- 0 0
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(let-be X (member-of S))
>>Error: You have not established (EXISTS-SOME (MEMBER-OF S))

(:PROPERTY LET-BE ONTIC:CONSTRUCTOR-FUNCTION):
Arg I (ONTIC:ABBREV): X
Arg I (ONTIC:TYPE): (MEMBER-OF S)
Rest arg (FORMULA); NIL

"-A, 4 : Back to frame 6 read-eval-print
s-B: Return to Lisp Top Level in Ontic Listener
s-C: Restart process Lisp Pane 1

= 4

OC vic Listener

Onic Stock
6 (LET-BE X (flEMBER-OF S))

5 (PUSH-GOAL (IS S (SUBSET-OF INT)) .

4 (LET-BE INT (FANILY-"NTERSECTION F))

3 (SUPPOSE (IS-EVERY (MEMBER-OF F) (SUPERSET-OF S)))

2 (LET-BE .SET)
I (LET-BE F FAKILY-OF-SETS)

Figure 1.8: A Failed Instruction to the Interpreter
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(suppome (exists-some (member-of S)))

(let-be X (member-of S))

(is? X (member-of INT))
I-OONT-KNOU

-S"

Cr , c Listener

Onvic Stock
7 (LET-BE X (MiEMBER-OF S))

*? 6 (SUPPOSE (EXISTS-SOIE' (MEMBER-OF S)))

5 (PUSH-GOAL (IVS' (SUBSET-OF INT))

* 4 (LET-BE INT (FRILY-INTERSECTION F))

3 (SUPPOSE (ZS-EVERY (MEMBER-OF F) (SUPERSET-OF S)))' ~ ~2 (LET-BE S SET) .... ...

I (LET-BE F FrAFILY-OF-SETS)

Figure 1.9: Supposing the Existence of Objects of Certain Kind

, .41
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V

;(defters (family-intersection (F family-of-sets))
; (the-set-of-elI

(lambda ((x (meber-of-eomber F)))
(is-every (somber-of F) (nst-containing x))))

(let-be S2 (member-of F))

(is? X (&ember-of S2))

(is? X (member-of INT))
YES

(is? S (SUBSET-OF INT))
YES

(note-goa I)

Ontic Listener

On tic Stock

I (LET-BE S2 (flEflBER-OF F)

7 (LET-BE X (IIEBER-OF 9))
6 (SUPPOSE (EXISTS-SOM E (l!iNER-OF W)

S (PUSH-GOAL (IS S (SUBSET-O 10T)))

4 (LET-BE INT (FAMILY-IMTERSECTIIN F))
3 (SUPPOSE (IS-EVERY (MEBER-OF F) (SUPERSET-OF S)))
2 (LET-BE S SET)
I (LET-BE F FARILY-OF-SETS)

-A..' Figure 1.10: Establishing the Goal in a Certain Context

.. ill"
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,Rbort]
NIL

CRbort]
NIL

(is? S (subset-of INT))
YES

On tic Listener

On tic Stack
6 (SUPPOSE (EXISTS-SOflE (MEMBER-OF S)))

S (PUSH-GOAL (IS ' (SUBSET-OF INTM)

4 (LET-BE INT (FA ILY-INTERSICTION F))

* 3 (SUPPOSE (S-EVERY (EnIER-OF F) (SUPERET-OF S)))
2 (LET-BE S SET)
I (LET-BE F FANILY-OF-SETS)

?'igure 1.11: Bringing the Result Back to an Earlier Context

*-!
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CAbort]
NIL

(is? S (subset-of INT))
I-OONT-KNOU

-'C.

Ontia Listener

Ormtc Stock
5 (PUSH-GOAL (IS S (SUBSET-OF INT)))

4 (LET-BE INT (FRN-LY-INTERSECTION F))
3 (SUPPOSE (IS-EVERY ( 'EMBER-OF F) (SUPERSET-OF S)))i 2 (LET-BE S SET)

* I (LET-BE F FAMlILY-OF-SETS)

Figure 1.12: The Result Does Not Move Past Relevant Suppositions

B.
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(note-goal)
T

(is? S (subset-of INT))
YES

- Critic Listener

Critic Stock
5 (PUSH-GOAL (IS S (SUBSET-OF 114T))

4.,

4 (LET-BE INT (FAMILY-INTERSECTION F)

4,.

3 (SUPPOSE (IS-EVERY CflEMI-OF F) (SUPERSET-OF 5))

I (LET-BE F FANILY-OF-SETS)

* Figure 1.13: A Simple Automatic Refutation Finishes the Proof

I44-Z
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To show that the set S is a subset of INT we must show that every member
of S is a member of INT. To do this we can consider some arbitrary member
X of the set S. In figure 1.8 the user tells the system to do so. However,
the system complains that we have not yet established that such members
exist; the set S might be empty. In general the system ensures that every

- r. object being considered is known to exist. In order to consider an arbitrary

member of the set S we must first assume that such members exist. In figure
1.9 the user first instructs the system to suppose that there are members
of the set S and then he instructs the system to consider a particular (but
arbitrary) member X. The user then asks the system if X is a member of INT

-- and the system doesn't know. At this point the user may be mystified as to
N why the system does not "see" the obvious fact that X is indeed a member

of the family intersection INT. Before proceeding further, the user reviews
the definition of the function FAMILY- INTERSECrION as shown in figure 1.10.

- This definition states that X is a member of the family intersection just in
. case X is a member of every set in the family F. In figure 1.10 the user

shows that X is a member of the intersection INT by showing that X is a
member of an arbitrary set S2 in the family F. This is done by considering an
arbitrary member S2 of the family F. In this scenario, instances of the type

%: FAMILY-OF-SETS are by definition non-empty and thus we do not need the
additional assumption that F is non-empty. When the system focuses on the
member 52 of the family F it "sees" that because X is a member of S, and
S is a subset of S2, X is a member of S2. At this point the system performs
an automatic universal generalization. Since S2 is an arbitrary member of
F, and since X has been shown to be a member of S2, it follows that X is a
member of every member of F. Furthermore since X is an arbitrary member
of S the system can perform yet another automatic universal generalization
and conclude that all members of S must be members of TNT and thus S is a
subset of INT. Asking the system a question has no effect on the state of the
system; the questions shown in figure 1.10 serve only to indicate the line of
"easoning used by the system. The problem was actually solved by forward

chaining as soon as the last context was entered.

The forward chaining inference mechanisms establish the goal in the con-
S. text shown in figure 1.10. In order to remember that the goal has been

proven, the system must update the underlying lemma library. More specif-
ically, if the lemma library were not updated, then when the user returned

N'



26 CHAPTER 1. ONTIC IN BRIEF

to a previous context, nothing would have been learned; the set of "obvious
truths" in a context is determined by the lemma library, the focus objects
and the suppositions. In the scenario shown in figure 1.10 the user explicitly
updates the lemma library by calling the function NOTE-GOAL. In this case
the system adds the following lemma:

(FORALL ((F FAMILY-OF-SETS)

(S SET))

(=> (AND (IS-EVERY (MEMBER-OF F) (SUPERSET-OF S))
(EXISTS-SOME (MEMBER-OF S)))

(IS S (SUBSET-OF (FAMILY-INTERSECTION F)))))

In any context, the user can instruct the system to note any formula that
is obviously true in that context. The function NOTE-GOAL is just an abbre-
viation for noting the laicst goal which has been pushed onto the context
stack; the same effect would have been achieved if the user had typed

(NOTE (IS S (SUBSET-OF INT)))

When a formula is noted the system constructs the implication which
states that suppositions active in the current context imply the noted for-
mula. The system then adds the universal closure of that implication to the
permanent lemma library. Note that in this case we have not really proven
the desired lemma; we have only proven it for the case where the set S is
non-empty.

Figure 1.11 shows that with the updated lemma, !ibrary, the desired result
:s "obvious" in the context associated with stack frame 6. However, the result
must still be proven for the case where S is empty; figure 1.12 shows that
the result has not yet been established at stack frame 5. But the case for
the empty set is trivial, and in figure 1.13 the user simply asks the system
to note the goal. Since the goal is not known directly at frame 5, the system
does a refutation proof; it enters a context where the goal is assumed to be
false. Given the new lemma shown above, the forward chaining inference

* mechanisms are able to derive a contradiction from the negation of the goal,
and thus the goal is established by refutation. Thus the note-goal in figure
1.13 has the effect of adding the following lemma to the lemma library.

-5
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(FORALL ((F FAMILY-OF-SETS)
(S SET))

(=> (IS-EVERY (MEMBER-OF F)
(SUPERSET-OF S))

(IS S (SUBSET-OF (FAMILY-INTERSECTION F)))))

The -proof" shown in figures 1.7 through 1.13 is automatically recorded
by the system; Figure 1.14 shows an automatically generated textual repre-
sentation of the complete proof. Evaluating the form shown in figure 1.14

=. with the Lisp interpreter causes the above two lemmas to be proved and
added to the lemma library. (The second lemma makes the first one obsolete
and the user can, if he wishes, explicitly delete the first lemma after the proof
has been done.)

6The textual representation of proofs involves IN-CONTEXT expressions. In
general an IN-CONTEXT expression is composed of two parts: a "context def-
inition" and a body; the context definition specifies the construction of a

. new context by giving a list of context-constructing instructions. The body
is a list of instructions to be executed in the specified context. The body of
an IN-CONTEXT expression may contain embedded IN-CONTEXT expressions.

* Embedded contexts inherit the focus objects and suppositions of outer con-
texts.

The two note-goal expressions in figure 1.14 correspond to the case anal-
ysis performed in the interactive proof. The first note-goal notes that if there
exists a member of S then the theorem is true. The second note-goal invokes
a refutation proof which effectively handles the :ase where S is empty. In
general multiple note-goals for the same goal correspond to a case analysis.
Often, as in this example, the context for th, last case does not need to be
explicitly constructed because an automatic refutation process initiated by

, the last note-goal effectively constructs the context for the last case.

The Ontic interpreter is able to use a large lemma iibrary without human
assistance; the system automatically applies facts from the lemma library
whenever it enters a new context. Figure 1.15 shows the lemma established

.. by the proof in figure 1.14 together with two other facts: for every family
of sets F, every member of F contains (as a subset) the fanily intersection
.f F; and, for two sets, if each is a subset of the other, then the two sets

%w%
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1N-CONTEXT ((LET-BE F FAMILY-OF-SETS)

S-" (LET-BE S SET)

(SUPPOSE (IS-EVERY (MEMBER-OF F)

(SUPERSET-OF S)))
(LEI-BE INT (FAMILY-INTERSECTION F))
(PUSH-GOAL (IS S (SUBSET-OF INT))))

S. (IN-CONTEXT ((SUPPOSE (EXISTS (MEMBER-OF S)))

(LET-BE X (MEMBER-OF S))
a. (LET-BE 52 (MEMBER-OF F)))

(NOTE-GOAL))

- (NOTE-GOAL))

Figure 1.14: The History

(FORALL ((F FAMILY-OF-SETS)
(S SET))

(,> (IS-EVERY (MEMBZR-OF F)
:/ -(SUPERSET-OF s))

(IS S (SUBSET-OF (FAMILY-INTERSECTION F)))))

(FIIKALL ((F FAMILY-OF-SETS)
(S (MEMBER-O F)))

(iS (FAMILY-INTERSECTION F)

(SUBSET-OF S)))

O (FOP.ALL ((Si SET)
(52 SEW)

(- (AND (IS S1 (SUBSET-OF S2))
('S 32 (SUBSET-OF Si)))

( Si $2)))

Figure 1.15: Some Simple Facts

."
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(IN-CONTEXT ((LET-BE S SET)
C (LET-BE S2 (SUBSET-OF S))

(LET-BE F (THE-SET-OF-ALL
(AND-TYPE (SUBSET-OF S)

(SUPERSET-OF S2)))))
(IN-CONTEXT ((PUSH-GOAL (= S2 (FAMILY-INTERSECTION F))))
(IN-CONTEXT ((LET-BE INT (FAMILY-INTERSECTION F))

(LET-BE S3 (MEMBER-OF F)))
(NOTE-GOAL))))

4" Figure 1.16: A Proof Using Lemmas

are equal. Figure 1.16 is a proof which makes use of the facts in figure 1.15.
We assume that the lemmas in figure 1.15 have been placed in the lemma
library and are therefore available to the Ontic interpreter. The proof in
figure 1.16 goes as follows: Let S be any set and let S2 be any subset of
S. S. Let F be the set of all subsets of S which contain the set S2. We wish
to show that the family intersection of F equals the set 52. First the user
focuses on the family intersection of F by abbreviating this intersection with
the symbol INT. Next the user focuses on an arbitrary member of the family
F. Focusing on arbitrary member of F causes the system to "realize" various
facts about F. For example every member of F is a set and thus F is a family
of sets. By proving that F is a family of sets the system establishes that

-/ the term (FAMILY-INTERSECTION F) is well typed and thus the definition of
- FAMILY-INTERSECTION can be invoked. Furthermore S3 is a superset of S2

so S2 is a subset of S3 and by universal generalization S2 is a subset of every
member of F. Once the system deduces that F is a family of sets and every
member of F is a set which contains S2 the system automatically applies the

'Si first lemma in figure 1.16 and realizes that S2 is a subset of the intersection
INT. The system also realizes that the set S2 is a member of the family F and

A- applies the the second lemma in figure 14 thus realizing that the intersection
INT is a subset of 52. Finally the system applies the the third fact in figure
1.15 and realizes that INT equals S2.

Actually the Ontic interpreter makes no distinction between definitions
and lemmas; definitions are just universally quantified equations which are

4%
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accessed in the same manner as lemmas. The proof shown in figure 1.16
relies on definitions as well as the lemmas shown in figure 1.15. The proof
shown in figure 1.14 does not involve any previously proven lemmas but it
does involve the definition of the intersection of a family of sets.

In general, the user need not make explicit references to definitions and
.s lemmas. The user relies on the system to use definitions and lemmas when-

ever they are appropriate. For example, consider an arbitrary lemma of
-, following form:

(FORALL ((x rl) (y r2)) P(r, y))

This "lemma" might actually be a definition in which case $ is an equation
or logical equivalence. The Ontic system will automatically use this lemma
in any context where there are two focus objects A and B such that A is an

0instance of r and B is an instance of r2. In general, a universally quantified
5lemma such as the one shown above will be instantiated with all combina-

tions of focus objects that match the type restrictions of the lemma. Once
the lemmas have been instantiated with the focus objects, the system applies
the forward chaining inference techniques of Boolean constraint propagation,
congruence closure, and automatic universal generalization. The instantia-
tion process that invokes facts from the lemma library is a graph-theoretic
marker-propagation inheritance mechanism called focused binding or seman-
tic modulation. The focused binding mechanism achieves the effect of instan-
tiation but avoids constructing the formulas that result from the syntactic
substitutions done by normal instantiation.

One way of measuring the performance of a verification system is to com-
. .pare the length of a natural argument with the length of a corresponding

machine readable proof. The ratio of the length of a machine readable proof
* to the length of the corresponding natural argument is called the expansion

factor for that proof. Figure 1.17 shows both an Engiish natural argument
"IiI XhW (taken from a textbook on lattice theory, [Gratzer 78] page 24) and a corre-

sponding Ontic proof. The natural argument contains 75 words and mathe-
matical symbols, while the Ontic proof contains 73 symbols, yielding a word
count expansion factor of about one. For the most part the "clear and nec-
essary" steps of this particular natural argument correspond to statements

4. -that the Ontic interpreter can verify in a single step.

.. ...
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--N

Proof. Let P be a poset in which V S exists for all S C P. For
H C P, let K be the set of all lower bounds of H. By hypothesis
VK exists; set a = VK. Ifh E H, then h > k for all k e K;
therefore h > a and a E K. Thus a is the greatest member of K,
that is a = A H.

(IN-CONTEXT ((LET-BE P POSET)
(SUPPOSE (FORALL ((S (SUBSET-OF (U-SET P))))

(EXISTS (LEAST-UPPER-BOUND-OF S P))))
* (LET-BE H (SUBSET-OF (U-SET P)))
-1 (PUSH-GOAL

(EXISTS (GREATEST-LOWER-BOUND-OF H P)))); #1
(IN-CONTEXT

N" ((LET-BE K (THE-SET-OF-ALL (LOWER-BOUND-OF H P)))

(LET-BE a (THE (LEAST-UPPER-BOUND-OF K P))))

(IN-CONTEXT ((PUSH-GOAL (IS a (LOWER-BOUND-OF H P)))); #2
(IN-CONTEXT ((SUPPOSE (EXISTS (MEMBER-OF H)))

(LET-BE hO (MEMBER-OF H)))

(IN-CONTEXT
((PUSH-GOAL (IS hO (UPPER-BOUND-OF K P)))); #3

(IN-CONTEXT
((SUPPOSE (EXISTS (MEMBER-OF K)))

(LET-BE kO (MEMBER-OF K)))
U (NOTE-GOAL)); #3

(NOTE-GOAL))); #3

(NOTE-GOAL)); #2

(NOTE-GOAL))); #1

Figure 1.17: Least upper bounds yield greatest lowcr bounds.

-'f
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The natural argument shown in figure 1.17 concerns complete lattices.
; P'iA complete lattice is a partially ordered set P such that every subset of P

has both a least upper bound and a greatest lower bound. The arguments
in figure 1.17 show that if exery subset of a partially ordered set P has a
least upper bound, then every subset of P must also have a greatest lower
bound. In the argument from Gratzer's book. shown in figure 1.17, the least

-. upper bound of a set H is denoted V H and the greatest lower bound of H

is denoted A H. In the Ontic proof the goals are numbered so that one can
more easily see the association between the statement of the goal and the
achievement of the goal.

A different measure of the length of an argument or proof is obtained by
counting the number of type expressions rather than words. The number of
type expressions used in an argument provides a rough measure of the number

* of "statements" involved. A direct translation of the natural argument in
figure 1.17 into Ontic would contain 14 type expressions while the actual
Ontic proof contains only 13 type expressions yielding an expansion factor
of about one. Thus the basic result that the Ontic proof is about the same
length as the English proof does not depend on the particular way in which
one measures length.

, In checking the proof in figure 1.17 the Ontic interpreter makes use of a
large lemma library. The system uses some basic facts about partial orders
together with the following facts:

1. The definitions of the concepts involved, e.g. the definition of partial
orders, lower bound, least member and greatest lower bound.

2. The fact that if s is a subset of a partially ordered set p then the set
* of all lower bounds of a is a subset of p.

3. The fact that for any subset s of a partially ordered set p, there is at
most one least upper bound of .

• " One can argue that the expansion factor measured for the proof of figure
1.17 is too low because the Ontic interpreter was allowed to use preproven
lemmas that are not shown in the formal proof. But all of the lemmas used

0.
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I.

w: Lemma Predicate Count Word Count
Expansion Factor Expansion Factor

If arbitrary least up- .9 1.0
'K per bounds exist then arbi-

trary greatest lower bounds
also exist.

Every filter is contained in 1.3 1.2

an ultrafilter.

If F is an ultrafilter and 2.1 2.7
xVy E F thenx E For

4>Y yEF.

.. Every Boolean algebra. is iso- 2.0 1.7
morphic to a field of sets.

Table 1.1: Various Measurements of the Expansion Factor

by the Ontic interpreter in proving this theorem are of general interest and
have in fact been used in several different contexts. Furthermore the last two

A lemmas listed above have simple one or two line proofs in the Ontic system
and thus if those lemmas had not been in the lemma library the proof shown
in figure 1.17 would not be much longer.

A It seems likely that human mathematicians unconsciously invoke a large
_ data base of general facts when they think about mathematical objects. Fur-

thermore, it seems likely that in familiarizing oneself with a new domain one
must verify a large body of "trivial" facts and incorporate these facts into
the way one thinks about the domain.

Z Bell and Machover's text on mathematical logic gives a more concise proof
of the lemma of figure 1.17 ([Bell & Machover 77] page 127). In the proof a

O.o



F,-

34 CHAPTER 1. ONTIC IN BRIEF

least upper bound is called a supremum and a greatest lower bound is called
-. an infimum.

Let L be a partially ordered set in which each subset has a
supremum. Let X be a subset of L, and let Y be the set of lower

-"', bounds of X in L. Then Y has a slipremum z and it is not hard
to see that z is the infimuni of X.

A direct translation of the statements in Beli and Machover's into the
language Ontic would contain 7 type expressions while the machine verifiable
Ontic proof has 13 type expres3ions yielding a predicate count expansion

, factor of about two. While Bell and Machover's proof is clearly shorter than
Gratzer's proof, Bell and Machover's proof includes the phrase "and it is not
hard to see that". This phrase seems to be an admi-.ion that the given proof
is not complete. Gratzer's proof, on the other hand, contains no such phrase
and we must take Gratzer's proof as a fully expanded (complete) proof.

"a, The appendix contains a complete listing of ? jnathewc.tical development
that ends with a proof of the Stone representation ttcorern for Boolean lat-
tices. This appendix provides a large number of examples of Ontic proofs

-and these proofs can be used to evaluate the Ontic verifier. Table 1.1 shows
four expansion factor measurements taken from four of the larger proofs done
in the Ontic system. The table lists both a predicate count expansion factor
and a word count expansion factor for each test case. Both the natural ar-
gument and the corresponding Ontic proofs for each test case can be found
in the appropriate sections of the appendix.

The machine readable proofs underlying table 1.1 relied on an extensive
lemma library and the expansion factor measurements are thus open to the
criticism that parts of the machine readable proof have been hidden in the
lemma library. However, once a sufficiently large lemma library has been
constructed, it should be possible to prove new theorems without extending
the basic lemma library. I believe that the numbers listed in table 1.1 are
accurate in that, with a mature lemma library, new theorems can be verified
with small expansion factors even if the expansion factor takes into account
all lemmas added during the verification.

Ix
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1.4 The Inference Mechanisms
%.

All of the inference mechanisms used in the Ontic system manipulate label-
ings of a graph structure. More specifically, the Ontic system compiles the
lemma library into a graph structure where the nodes in the graph struc-

-.. ture correspond to unique expressions in the formal language. There are
nodes that correspond to terms, formulas, type expressions, function expres-
sions and type generator expressions. The graph structure has nine different
kinds of "links" where each link expresses a certain way that nodes are re-
lated. For example if n is the node corresponding to the type expression

(LOWER-BOUND-OF s p) then there is a subexpression link that relates n to
- the three nodes that correspond to the expressions LOWER-BOUND-OF, s and p.

There are also links that express Boolean constraints among formula nodes,
links that relate a lambda function to the node representing the bound vari-
able and the body of that expression, and six other kinds of links.

A labeling of the graph structure consists of two parts: a partial truth
labeling on formula nodes, and a color labeling on all nodes. For each formula
node p the partial truth labeling either assigns p the label true, assigns p the
label false, or leaves p unlabeled. The color nodes represent an equivalence

relation on nodes: two nodes with the same color label are considered to be
equivalent, i.e. proven equal in the current context. Whenever an inference
is made the system updates the labeling: either a formula is assigned a truth
label or two equivalence classes are merged by recoloring one class to be the
same color as the other class. Any such inference process for updating labels
on a fixed graph structure must terminate because there are only finitely

>- many formula nodes which can be assigned truth labels and every merger of
d", equivalence classes reduces the number of equivalence classes remaining and

* the number of equivalence classes can not drop below one.

The same underlying graph structure can be used in many different con-
texts. Graph structure is never thrown away: each time new graph structure
is created it is saved for use in other contexts. Truth and color labels, on

*. the other hand, are temporary; they are thrown away, for example, when the
system stops considering a particular supposition or focus object.

This section presents an informal description of the inference mechanisms

B.
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which oper'ate on the graph structure and the way in which the graph struc-
ture is constructed from the lemma library. A precise description of the

I, inference mechanisms and graph structure is presented in chapters 4 and 5.
Chapter 6 contains a precise description of the Ontic language and chapter 7
contains a precise description of the way the lemma library is compiled into
graph structure.

1.4.1 Inference Mechanisms for Quantifier-Free Logic

Boolean constraint propagation and congruence closure were originally de-
signed as inference techniques for quantifier-free logic. Boolean constraint
propagation adds truth labels in response to Boolean constraints and pre-
vious truth labels. For example, if the node for the implication (s> T I)
is labeled true, and the node for 4 is labeled true, then Boolean constraint
propagation will ensure that the node for 'P is labeled true. Similarly, if the
node for (=> D IQ) is labeled true, and the node P is labeled false, then
Boolean constraint propagation will ensure that the node for O is labeled
false.

Boolean constraint propagation is also responsible for ensuring a certain
relationship between color labels and the truth labels of nodes representing
equalities. To ensure this relationship the system may merge equivalence
classes in respon.me to the addition of a truth label or, alternatively, add a
truth label in response to the merger of equivalence classes. More specifi-
cally, let p be a uade which represents an equation between the expressions
represented by nodes n1 and n2. If the equality node p is assigned the label
true then the system ensures that nodes n1 and n2 have the same color label,
i.e. are in the same equivalence class. On the other hand if the nodes n1
and n2 are in the same equivalence class then the system ensures that p is
assigned the label true.'

Congruence closure is responsible for -nsuring that the equivalence rela-
tion represented by the color labels respe:cts the substitution of equals for
equals. For example consider terms (POWER-SET sl) and (POWER-SET 52).

7If n, and n2 are in the same equivalence class and the equality node p has been labeled
false by some other inference process then the system signals a contradiction.

Mi
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-. '.Congruence closure ensures that if the nodes representing the terms s, and s2
'.'-'have the same color label (are in the same equivalence class) then the nodes

-. representing the expressions (POWER-SET sl) and (POWER-SET S2) also have
the same color label. When two equivalence classes are merged congruence

' 2 closure may merge additioi,al equivalence classes in order to ensure that the
.-. '.equivalence relation respects the substitution of equals for equals.

i . 1.4.2 Generic Individuals, Classification, and Focused
€ Binding

!"i :Recall that a context consists of a lemma library, a set of focus objects and
: : .a set of suppositions about the focus objects. Focused binding is a way of

N.-.

%- applying the universally quantified formulas in the lemma library to the focus
%, objects in a context. This is done using an inheritance mechanism similar
s.' in spirit to Falilman's virtual copy mechanism based on marker propagation
~[Fahlman 79]. More specifically, each type r which has been compiled into
-- : a node in the graph structure is associated with a set of (typically two orthree) generic individuals of that type. Information that is known to hold for

a given type is explicitly stated about the generic individuals of that type. A

, - focus object which is known to be an instance of type r becomes a "virtualCOpY" of one of the geneic individuals of type and thus inherits information

':2- from that individual.
Each gm eric individual is a term node in the graph structure. Information

,.,. which is krown to hold for the type T is explicitly stated about each genericsindividual of type r. Moe specifically, if the system compiles into graph
qstructure universal formula of the form

!! (FOFRALL ( (x r)) (D(x))

o.

N.

1.4.2 foageneric Idividuals Classifer wictio a nd d Fote rphce
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(> (AND (FORALL ((x r)) 0(x))

(EXISTS-SOME r))

Cg))

Given the above constraint, if the universally quantified formula is true in a
context, and instances of type r are known to exist in that context, then the
body of the universal formula is known to be true for each generic individual
of type 7% In this way everything that is known about the type in general is
explicitly stated about the generic individuals of that type.

CClassification assigns types to focus objects. Classification is needed in
order for focus objects to inherit information from generic individuals. The
system classifies a focus object r by collecting a set, types(r), of types known
to hold for r according to the following rules:

1. If the node for the formula (Is r r) is labeled true then r is included
in types(r).

2. If s is a term that is in the same equivalence class as the focus object
r, and if the formula (IS s a) is labeled true, then a is included in
types(r).

* "C 3. If r is a member of types(r), and the formula (IS-EVERY r a) is labeled
true, then a is included in types(r).

4. If r is a member of types(r) and a is a type in the same equivalence
class (with the same color as) r then a is included in types(r).

Focused binding causes a given focus object to inherit information from
* a given generic individual. More specifically, for each focus object r and

each type r in the set types(r) the system chooses a generic individual g of
.% type r and constructs the binding g 4 r. The generic individual g can be

thought of as a typed variable and the binding g i-* r can be thought of
as a variable binding. In the Ontic system the variable binding g - r is
implemented via the color labels: when the system constructs the binding
g -4 r it assigns g and r the same color label, thereby making .q equivalent
to r. When g is made equivalent to r, the congruence closure mechanism is

0.

C.
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used to "unify" or "match" the expressions involving the generic individual
g with the expressions involving the focus object r. In this way the focus
object r becomes a virtual copy of the generic individual g. Since general
knowledge about the type r is explicitly stated about the generic individual
g, general knowledge about the type r becomes effectively stated about the
focus object r. In this way general facts in the lemma library are effectively

hi' applied to focus objects of the correct type.

The focused binding process is sometimes called semantic modulation
because it involves modulating (changing) the interpretation of a fixed generic
individual. The same generic individual can be bound to different focus
objects in different contexts. In this way the system modulates the semantic
denotation of the generic individual, hence the term semantic modulation.

* There are several subtleties involved in focused binding. First, the system
must not bind the same generic individual to two different focus objects
simultaneously. For example, consider a generic number g and two numbers
j and k which are focus objects such that j is an even number and k is an

.4 odd number. If the system bound the generic number g to both j and k
simultaneously then it could prove that g was both even and odd and thus
that there exists a number which is both even and odd.

A second subtlety involves the possibility of circular bindings. Before
* generating a binding of the form g i-. r the system must be sure that r

does not depend on g. Any term can be given as a focus object. Generic
individuals themselves correspond to terms in the Ontic language (they are

C Ontic variables) and thus a focus object may be a generic individual or a term
that contains a generic individual.8 For example, if g is a generic individual
ranging over numbers then the term 1 + g might be a focus object. In this

- case one should prevent the binding g i-4 1 + g; no number is equal to the
. next number. The dependency test for avoiding circular bindings is similar

to the occurs-check done in unification. Given a focus object r of type r
the system chooses a generic individual g such that g does not "occur in" r.
Unfortunately the occurs-check performed by the Ontic system is somewhat

'By abuse of notation I will identify a generic individual with the corrosponding Ontic
variaL le. Technically, a generic individual is a node in the graph structure while an Ontic
variable is a term of the Ontic language.

,.
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complicated. Consider a generic individual y which ranges over numbers
. which are greater than x, where z is a generic individual ranging over all
_4 numbers (y is a generic individual of type (GREATER-THO x)). The binding

z 4 1 + y is illegal because it forces x to be greater than itself. However, X
is not a free variable of the expression 1 + y. Rather. x is a free variable of
the type of y where y is a free variable of 1 + y. We say that an expression
u depends on a variable x if either x appears free in u or there is some
free variable y of u such that the type of y depen& on x. Unfortunately
this notion of dependence still does not provide a sound occurs-check in the
Ontic system: if x and y both range over arbitrary numbers the system
must prevent the two simultaneous bindings x '-* I + y and y F-) 1 + x.
To prevent such circularities the system must take previous bindings into
account when computing occurs-checks. It turns out that there is a subtle
interaction between previous bindings and the dependencies introduced by
types. More specifically, if the system has already constructed the binding
y -* u then the type of y can be ignored in the occurs-check procedure. The
resulting occurs-check procedure runs quickly but the proof that the occurs-
check procedure leads to sound inference is somewhat complex (see sections
5.2 and 5.3).

1.4.3 Automatic Universal Generalization

The fourth inference mechanism used by the Ontic system is automatic uni-
9 ve-sal generalization. Universal generalization can be applied when the sys-
Al tem has deduced a fact about an arbitrary individual and no assumptions

have been made about that individual. More specifically, a universal gener-

alization inference can be made if:

. g is a generic individual of type r.

* The system has labeled the node for a formula 4*(g) true.
S.

a No assumptions have been made about the individual g other than the
assumption that it is an instance of type r..

-t
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* No free variable of b(g) has a type Lzt depends on g. The notion of
dependence used here is the same as that defined above: r depends on

x just in case x appears free in r or some free variable of r has a type
which depends on x.

When the above conditions are met the system can infer the universal closure

(FORALL ((x r)) D(x))

There are several things to note about automatic universal generalization.
First, this inference mechanism does not construzt new formulas or new graph

N structure; automatic universal generalizaticn is only applied when the graph
already contains nodes for the formulas 4(g) and the universal closure

-- (FORALL ((x r)) *(x))

Second, types play a central role in the automatic universal generalization
mechanism. When the system proves the formula 0(g) it is allowed to use the
fact that g is an instance of the type r, and the resulting universal statement
applies to all instances of 7. Third, without the last restriction universal

*' generalization is unsound. For example, consider a generic individual y that
ranges over numbers greater than the generic number x. Without maldng

- any assumptions about x and y other tuan that they are both instances of
their respective types, the system can deduce that x is less than y. It does not
follow, however, that all numbers are less than y; there is no largest number.
The fact that x is less than y does not imply that all numbers are less then
y because the x "occurs in" y; x is a free variable in the type of y. The same
proof that shows that the Ontic occurs-check procedure is sound for focused
binding can be used to show that the Ontic occurs-check procedure leads to
sound universal generalization.

The above notion of universal generalization can be made more powerful
by relaxing the restriction that no assumptions have been made about the

arbitrary individual being generalized over. More specifically one can perform
- universal generalization under the following conditions:

1. * g is a generic individual of type r.

Sb.

"a,
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@ The system has labeled the node for a formula 4(g) true.

* The system has bound g via the binding g '-4 h.

e h is a generic individual of type o, where a has the same color label as
r in the current context.

* No assumptions have been made about h.

* h does not "occur in" any free variable of D(g) other than g.

When the above conditions are met the system can infer the universal closure

(FORALL ((x 7)) D(x))

Again, note that this inference mechanism does not construct new for-
mulas or add new graph structure. In order for this inference mechanism to
be applied, all of the formulas involved must already be compiled into nodes
in the graph structure.

To see the importance of the more general automatic universal general-
ization mechanism, consider a subset s of a partially ordered set p and the
set u of all lower bounds of s as a subset of p. Now consider a member x of
s. By definition u is the set of lower bounds of s so x is an upper bound of
u. It turns out that in the Ontic system proving this last statement requires
universal generalization. More specifically the Ontic system must focus on
an arbitrary member y of u and note that x is greater than or equal to y.
Since y is an arbitrary member of u, x is greater than or equal to all members
of u. In this situation the system will construct the following bindings:

S/ _4 U

Here s' is a generic individual ranging over arbitrary subsets of p and z is a
generic individual ranging over members of s'. Now y is a generic individual
ranging over members of u and z is a generic individual ranging over members
of s', so z and y are different generic individuals whose types happen to be
equal in the current context. Furthermore z is bound to y. In this situation
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the system generalizes over the variable z rather than the variable y. The
system must generalize over z rather than y because the definition of upper
bound is stated about the generic subset s' rather than the particular subset
u and thus the quantified formula in question quantifies over members of s'
rather than members of u.

All of the inference mechanisms used in the Ontic system run concurrently
and interact with each other. Inferences can lead to more knowledge about
the types of focus objects; this can lead to more bindings, which can lead
in turn to more inference. The time required to finish the overall inference
process is bounded by the size of the graph structure. This is because the
inference processes can only add as many truth labels as there are formula
nodes and can only merge as many equivalence classes as there are nodes
in total. The factors that contribute to the size of the graph structure are
discussed below.

1.4.4 The Size of the Graph Structure

When a new focus object r of type T is introduced, it is possible that all
generic individuals of type r have either already been bound to other objects
or occur in the focus object r and thus can not be bound to r. In this case
the system creates a new generic individual of type r and copies all of the in-
formation known about type T as explicit statements about that new generic
individual. Once the generic individual has been constructed, however, it
is saved and can be used in other contexts. For most arguments there are
already enough generic individuals in the graph structure to accommodate
the focus objects and no new graph structure is created. However, if there
are not enough generic individuals to accommodate the focus objects, then
generic individuals are created on demand as focus objects are introduced.
As generic individuals are created the underlying graph structure expands.

The size of the graph structure created by the Ontic compiler is deter-
mined by the library of mathematical facts and by the number of generic
individuals that have been created for each type. Fortunately, for any given
bound on the level of quantifier nesting, the size of the graph structure is
linear in the size of the lemma library; the amount of graph structure is the
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sum over all lemmas of the amount of structure created by each lemma. This
fact allows the Ontic system to be used with large libraries of mathematical
facts. However, the cost of an individual lemma can be quite high. Consider
a Ilemma of the following form:

(FORALL ((x rl) (y r2 ) (z r3 )) 4 (x,y,z))

The body of this lemma will be copied for each triple gi, g2, g3 where

9i, 92 and g3 are generic individuals of type rl, r2 and r3 respectively. In
general every quantified formula which is compiled into graph structure gets
instantiated with every generic individual of the appropriate type. Let I7 1,

I r2J and 11-3 be the number of generic individuals for r1 , r2 , and r3 respectively.
The number of copies of the body of the above lemma is:

1'r I. 1r721 -IT34-

Generic individuals are created on demand as new focus objects are intro-
duced. 1f no more than n focus objects have been introduced in any one
context then there will be at most n generic individuals of each type. If the

-? maximum number of quantifiers used in any lemma is d then there can be no
.4 more than nd copies of the body of each lemma. Lemmas rarely involve more

than three quantifiers and most sessions with the Ontic interpreter involve at
most five simultaneous focus objects. Thus a typical lemma in a typical ses-
Sion generates no more than 53 or 125 instantiations. In practice this number
is smaller because most lemmas quantify over highly specialized types and
there are typically only a small number of generic individuals of specialized
types. Again note that the size of the graph structure ;.s linear in the size of

N% the lemma library; the total amount of graph structure is just the sum over
all lemmas of the amount of structure generated by each lemma. However,

- the size of graph structure is very sensitive to the maximum number of focus
objects introduced in a given context. A good rule of thumb seems to be
that the size of the graph structure is proportional to n3ISI where n is the
maximum number of focus objects introduced in any one context and [SI is

* the size of the lemma library.

'4.-N V
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Chapter 2

Comparison with Other Work

4 The Ontic system represents a synthesis of ideas from artificial intelligence
and automated theorem proving. Constraint propagation is a forward chain-
ing inference technique that terminates quickly because it monotonically fills
a finite set of "slots"; the Ontic system monotonically generates truth and
color labels for nodes in a finite graph structure. Congruence closure is a pow-
erful theorem proving technique for reasoning about equality. Congruence
closure is usually viewed as an inference procedure reasoning about equalities

. involving ground (variable-free) expressions. In the Ontic system, however,
congruence closure is used as an integral part of general first order theorem
proving. Focused binding, also known as semantic modulation, is closely re-
lated to inheritance mechanisms which have been developed for knowledge
representation languages and object oriented computer programming lan-

."' guages. Focused binding integrates inheritance with other theorem proving
4. mechanisms. Congruence closure is used to implement a strong virtual copy
*mechanism that allows focus objects to inherit from generic individuals. Au-

tomatic universal generalization is perhaps the simplest and yet the most
original feature of the Ontic system. Ontic brings all these ideas together in
a single integrated inference process.

q! The first section of this chapter relates each of the four basic inference
mechanisms used in Ontic with previous work in knowledge representation

Iand automated theorem proving. The second section of the chapter relates

1 45
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Ontic's focused binding mechanism to unification. Focused binding and uni-
fication provide alternative ways of selecting and applying facts from a fact

J library. The third section of the chapter lists various theorem proving mech
anisms othei than those used in the Ontic system and attempts to show how
they are related to Ontic. The final section of the chapter lists some of the
general issues to be considered in constructing a proof verification system and
discusses how Oxx set term Ontic and various other systems have addressed
those issues.

2.1 Inference Mechanisms Similar to Ontic's

The following four sections discuss each of Ontic's four inference mechanisms
in turn. The first three inference mechanisms are related to well known
inference techniques. Ontic, however, brings these mechanisms together in

an integrated, object oriented theorem proving process.

2.1.1 Constraint Propagation

There are many mechanisms in the artificial intelligence literature which
*: could be described as constraint propagators. By "constraint propagation"

I mean an inference process whose running time, or number of processing
steps, is directly bounded by the size of a finite constraint network. On-
tic is a constraint propagation system in two ways. First of all, one of the
fundamental inference mechanisms is Boolean constraint propagation which
is a special case of the arc-consistency constraint propagation technique for

* general constraint satisfaction problems [Mackworth 77]. Second, all of On-
tic's inference mechanisms operate by labeling a graph structure. The graph
structure is analogous to a constraint network in that the total number of
labeling operations is directly bounded by the size of that graph structure.

Many artificial intelligence researchers have used constraint propagation.
Waltz used constraint propagation to filter the possible interpretations of
lines in a line drawings of polygonal physical objects [Waltz 751. A line in a
drawing of a scene can be interpreted as a convex edge on single object, ait
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concave edge on a single object or an edge between two objects. A particular

interpretation of an edge is called a "label" for that edge. Vertices between
edges provide constraints on the possible interpretations of edges. In Waltz
line labeling a forward chaining inference process systematically eliminates
possible labelings of individual edges. The running time of the proccss is
directly bounded by the number of edges and the number of labels that can

• ,be eliminated.

The Waltz line labeling procedure can be used in the more general setting
of an arbitrary constraint satisfaction problem [Mackworth 77]. A constraint
satisfaction problem consists of a set of variables each of which can be as-

* C. signed one of a finite set of possible values and a set of constraints where each
.-"- constraint restricts the simultaneous assignments for a given subset of the

variables. The arc-consistency procedure, which is a straightforward general-
ization of Waltz labeling, systematically eliminates possible interpretations of
variables based on local constraints. The running time of the arc-consistency
procedure is directly bounded by the number of variables and the number
of possible assignments for each variable. Boolean constraint propagation
is a special case of the arc-consistency procedure where the variables are
Boolean, i.e. they can be assigned the labels true or false, and the constraints

V are disjunctive clauses involving the Boolean variables. Boelean constraint
propagation is described in more detail in chapter 4.

Sussman and Steele have proposed a language for expressing constraints
on real valued variables and constraint propagation techniques for dealing

-2' with such constraints [Sussman & Steele 80]. The number of propagation
-u operations performed by Sussman and Steele's system was directly bounded

by the number of variables involved.

Nevins constructed a forward chaining geometry theorem prover which
restricted the forward chaining inference process to an a priori fixed set of

formulas [Nevins 74]. Nevins' program used a diagram to focus the system's
a'. .. attention on certain lines. If a geometry problem has n points then there

are (') possible line segments between these points. A diagram, however,

subset of the (n) lines, those actually drawn in the diagram.
By limiting forward chaining to statements about these focused lines, the
forward chaining process does not generate large numbers of irrelevant facts.

.- -0 - [.. .. .....
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With Nevins' focused forward chaining mechanism there is no need for the
diagrammatic filter used by Gelernter [Gelernter 59].

'It

Ontic's inference processes operate on a finite graph structure; the number
of labeling operations is directly bounded by the size of that graph structure.
The Ontic system can us: the same graph structure in different contexts to

,.5 reason about different focus objects. When a generic individual g is bound to
a focus object r, a formula involving g can be viewed as a formula involving r;

in the presence of bindings the formula nodes in the graph structure represent

formulas about focus objects. Different bindings cause the nodes in the graph
structure to represent statements about different objects.

2.1.2 Congruence Closure

SW Congruence closure is the process of "closing" an equivalence relation on ex-

pressions under the inference rule of substitution of equals for equals. Con-

gruence closure was first discussed by Kozen for reasoning about finitely
presented algebras [Kozen 77]. Congruence closure has also been used by
Nelson and Oppen in constructing fast decision procedures for a variety of
problems that arise in automatic program verification [Nelson and Oppen 80].
The congruence closure procedure used in the Ontic system, and discussed in

some detail in chapter 4, is based on the procedure given by Downey, Sethi
and Tarjan [Downey, Sethi & Tarjan 80].

Ontic uses congruence closure both as a mechanism for reasoning about
equality and as a replacement for unification. The relationship between On-

tic's use of congruence closure and traditional unification is discussed in sec-
tion 2.2.

2.1.3 Focused Binding as Inheritance

Focused binding can be viewed as an inheritance mechanism: information
about a type is inherited by instances of that type. Type hierarchies and
inheritance also play an important role in object oriented programming lan-

i.
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guages such as Smalltalk [Ingalls 76]. In object-oriented programming, data
types are organized into a hierarchy where one data type can be a subtype of
another. Data objects are usually records with data fields. A given data ob-

ject inherits both data fields and functional behavior from all the supertypes
of its immediate type. A fairly rigorous, though not very general, treatment
of some basic ideas in object-oriented programming is given in [Cardelli 84].

N>,"
* Type hierarchies and inheritance also play a central role in many knowl-

edge representation systems and object oriented programming languages.
Frame-based knowledge representation languages typically allow the user to
define "concepts" which he or she organizes into an "is-a" hierarchy (e.g.
[Brachman & Schmolze 85]). A concept represents a class of structured ob-
jects; the concept is associated with a set of "slots"; an instance of that
concept is an object with specific "fillers" or "values" for the slots of the

*concept. For example the concept room might have slots ceiling, floor, walls,
and furniture. Any particular room will have a particular ceiling, a particular
floor, and a particular set of pieces of furniture. Furthermore, a concept can
place certain constraints on the slot fillers. For example the concept room
might specify that the furniture slot is always filled with a set of physical
objects. The user could introduce the concept auditorium as a specialization
of the concept room and the concept auditorium would then automatically
"inherit" the slots and constraints of the concept room.

Ontic's focused binding mechanism is very similar to Fahlman's virtual
copy mechanism based on marker propagation [Fahlman 76]. Fahlman pro-
posed a semantic network formalism in which objects inherit information

* 4 from classes by passing markers along links in the network. The marker
-- passing is done in such a way that the object being considered becomes a

"virtual copy" of generic objects which contain information about classes.
In the Ontic system color labels are used instead of Fahlman's markers. A

.r , focus object is made into a virtual copy of a generic individual by assigning
the generic individual the same color label as the focus object; congruence

-" closure ensures that if two nodes have the same color label then they have
, identical properties.O..

In the Ontic system inheritance is just one aspect of an integrated theo-
rem proving mechanism. Generic individuals are viewed as logical variables

'.

.. ..- A, " - - " : .. . . " ". . . . . . . . . i = 1 '  . . .
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that range over a given type. Inheritance occurs when a generic individual
g is bound to a focus object r via a binding g i-+ r. Fahlman's inheritance

4' mechanism, on the other hand, was not viewed as a formal inference mech-
anism and Fahlman did not propose integrating his inheritance mechanism
with other formal inference techniques such as Boolean constraint propaga-
tion, congruence closure, or automatic universal generalization.

2.1.4 Automatic Universal Generalization

Automatic universal generalization arises from a very simple idea: if a fact is
proven about a generic individual g of type r and no assumptions have been
made about g other than that g is an instance of r, then the fact holds for all
instances of r. In spite of the simplicity of the underlying idea, Ontic's uni-
versal generalization technique seems to be unlike any previous automatic
inference mechanism. For example, a comparison of Ontic and resolution
theorem provers shows that when Ontic performs universal generalization it
is treating a generic individual as a Skolem constant introduced by a univer-
sally quantified goal formula. But, unlike resolution, the Ontic system does
not make any distinction between variables and Skolem constants. Generic
individuals in Ontic are used in three different ways. If instances of a type
r are known to exist then each generic individual of type r is asserted to be
an instance of r. In this way the generic individuals can be used as Skolem
constants introduced by the premise that instances of r exist. But generic

individuals are also used as variables that can be bound to specific terms in
much the same way that resolution variables are bound during unification.
Generic individuals axe used in yet a third way by the universal generaliza-
tion mechanism; universal generalization treats generic individuals as Skolem
constants introduced by universally quantified goal statements.

The real novelty of the Ontic system lies in the way that the above four
inference mechanisms are brought together. Ontic integrates constraint prop-
agation, congruence closure, inheritance, and universal generalization in a
single object-oriented labeling process on a fixed graph structure.

.4.
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2.2 Focused Binding vs. Unification

One of the most striking features of the Ontic system, as compared to other
:" theorem proving systems, is that Ontic does not use unification. Unification

is often used to access information in a data base. A Prolog interpreter,
for example, takes a goal formula and finds a production in the data base
whose left hand side unifies with the given goal. A rewrite system takes an
expression to be simplified and finds a rewrite rule in the data base whose
left hand side unifies with the expression to be simplified. Under the set-

2 of-support heuristic a resolution theorem prover finds a clause in the data
base such that a literal of that clause unifies with a subgoal in the current
problem. In all these cases the system is finding an expression in the data

*base which unifies with an expression in the current problem.

Ontic accesses information in the lemma library via the focused binding
mechanism. Both unification and focused binding generate variable bindings
which are useful to produce specialized instances of the general formulas

t in a data base. However, unification and focused binding generate variable

bindings in very different ways. Unification starts with the expressions to be
matched and generates variable bindings which lead to the match. Focused
binding, on the other hand, starts with focus objects then generates variable

3 bindings (bindings of generic individuals) and relies on congruence closure to
%: generate "matches" between expressions involving variables and expressions

involving the focus objects. Unification is a local process: unification is
used in the application of a single rewrite rule or in a single resolution step.
Focused binding, on the other hand, is a global process involving an arbitrary

p..- number of facts from the lemma library. Focused binding is integrated into
the theorem-proving process. Automated inference and knowledge from the

0. lemma library is used both in determining the types which apply to a given
object and in determining equivalences between expressions after bindings

have been performed.

Considerable research has been directed toward incorporating various
kinds of knowledge (axiomatic theories) into unification. Equational axioms,
such as the commutativity and associativity properties of addition, can be
incorporated into the unification process so that, for example, a + x matc'Ws

Ais
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b± a with the binding z - b. Taxonomic information, information involving
the classification of objects into types, can also be incorporated into the uni-
fication process. Because Ontic's focused binding mechanism is integrated

1i with the theorem proving process, focused binding automatically incorpo-
rates both equational and taxonomic information into the matching process;
any lemma in the lemma library may be used in Ontic's matching process.
However, unlike most unification mechanisms, Ontic's matching process is

5not logically complete: it is possible that two expressions are provably equiv-
alent and yet the Ontic system fails to match them. This is consistent with
the overall design philosophy of the Ontic system; to ensure that the system
always terminates quickly, completeness has been abandoned.

2.2.1 Unification Relative to Equational Theories

There has been a considerable amount of research dedicated to incorporating
equationai theories into unification. For example consider addition as an
associative and commutative operator. Now consider the problem of unifying
x + (a + b) and a + (c + b). The binding x .-+ c unifies these two terms in the
sense thct the equation

c+(a+b) = a+(c±+b)

follows from the associative and commutative properties of +.

More generally, let F be a set of universally quantified equations between
first order terms. For example r might consist of the associative and comnu-
tative laws for addition. A general purpose theorem prover, such as a resolu-
tion system, could handle the equations in F simply by adding the equations
in P to the data base of general facts. In practice, however, it seems more
efficient to incorporate certain equational facts into the unification process.
Once these facts have been incorporated into the unification process they can

be removed from the general data base without loss of logical completeness.

ii A given set of equational axioms F has a corresponding unification prob-
* lem. For any substitution a and any expression u we define a(u) to be the

result of simultaneously replacing all free variables in u with their image un-
der a. A unification of two expressions s and t relative to the axioms in F is

SII
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a substitution a which yields a match between s and t relative to F, i.e. such
that the equational formulas in r imply that a(s) equals a(t). If F states
that + is associative and commutative then the substitution {x P-+ c} unifies
x + (a + b) and a + (c+ b) relative to F. The unification problem for F is the
problem of computing, for any given expressions s and t, a representation of
all unifications of s and t relative to F.

N.

*- If F consists of a single commutative operation then it is easy to determine
if there exists a unification of any two given terms relative to r. On the other
hand if F states that a binary operator - is associative, and -distributes over a
binary operator +, then there is no procedure which can decide the existence

Ir, of a unification of two arbitrary terms relative to F. These results and others
are discussed in a review article by Siekmann [Siekmann 84].

Unification relative to equational theories can be compared with Ontic's
t.  focused binding mechanism. Ontic first binds variables (generic individuals)

of the appropriate type to focus objects and then uses congruence closure to
"match" expressions involving the variables with expressions involving the

* focus objects. Ontic's matching process (congruence closure) automatically
incorporates equations from the lemma library. For example suppose that
Ontic's lemma library contains the associative and commutative laws for ad-
dition on the natural numbers. More specifically, suppose the lemma library
includes the following three lemmas:

(FOaALL ((X NATURAL-NUMBER)

(Y NATURAL-NUMBER))
(a (SUM-OF X Y)

(- (SUM-OF Y )

(FORALL ((X NATURAL-NUMBER)
(Y NATURAL-NUMBER)
(Z NATURAL-NUMBER))

(a (SUM-OF X (SUM-OF Y Z))
(SUM-OF (SUM-OF X Y) Z)))

A'-P
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(FORALL ((X NATURAL-NUMBER)
(Y NATURAL-NUMBER)

,.V 'Z NA'JRAL-NUMBER))

(- (SUM-OF X (SUM-OF Y Z))

(SUM-OF (SUM-OF Y Z) X)))

The first and second lemma above express the fact that addition is com-
mutative and associative respectively. The third lemma follows from the

-. other two. If the third lemma were not explicitly given, however, then when
focusing on three generic numbers 91, 92 and g, the following equation would
not be obvious to the Ontic system.

.l + (g2 + 93) = (92 + 93) + 91

To prove this equation in the absence of the third lemma, or to prove the
* third lemma trom the other two, the system must focus on the sum 92 + g-

so that the cormutstive law is applied to gi + (g2 + g3). The associative and
commutative laws allow for twelve different wavs of writing down the sum of

9 , 92 and 93: there are six different orders in which the numbers can appear
and two different ways of parenthesizing each order. In the presence of the

three lemmas given above all twelve ways of writing the sum are equivalent;
the twelve nodes in the graph structure that represent the twelve different
expressions for this sum are all in the same equivalence class; they have the

-." same color label. Now suppose the use, focuses on three particular numbers
a, b and c. The Ontic system will bind a generic number to each of these
three particular numbers; assume that the system generates the bindings

g -~ a

92 '

3* C

."

n-, '... g 2 -

Given that all twelve expressions for the sum of gi, g2 and g3 are in the
same equivalence class, congruence closure together with the above bind-

t ings ensures that the term a+(b+c) is equivalent to the term h+(c+a). By

* using congruence closure as a matching mechanism, and by precompiling
- ~ equational theories as equations involving generic individuals, the Ontic sys-

tem automatically performs theory-relative matching. Unfortunately Ontic's

4.
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matching process is not complete; the incompleteness is demonstrated by the

need for the third lemma given above. On the other hand, as the example

-- shows. one can always improve the power of the matching process by adding
derived equational lemmas to the lemma library.

Ontic's focused binding mechanism automatically incorporates any equa-
tional lemma whatsoever into the congruence closure process; in the Ontic
system one does not have to design a new theory-relative matching process
for each new theory as one must do for theory relative unification. Ontic's
mechanism has the disadvantage however that there is no guarantee of com-
pleteness - congruence closure may fail to equate semantically equal terms.

2.2.2 Unification Relative to Taxonomic Theories
A

Several researchers have investigated unification relative co theories which
.1

are not equational. Non-equational theories incorporated into the unification
process are sometimes called taxonomic theories because they usually encode
a classification of objects into types. The separation of "taxonoric" and
"assertional" information has been discussed in the knowledge representation
literature [Brachman, Fikes & Levesque 821. For example consider the axiom

4 'Vx whale(x) =>. mamrnal(x)

This axiom expresses an inclusion relation between the "type" whale and
the type mammal. Inclusion relations of this kind can be incorporated into
the unification process and need not be stated explicitly in the data base of

4, a general purpose theorem prover.

d Walther has given a unification algorithm which handles any taxonomic
theory expressible as a partial order on class symbols [Wadther 84a]. He
showed that for any such taxonomic theory r and any two typed terms s

and t the set of all unifications of s and t can be expressed with a finite set of
most general unifiers (i.e. the unification problem is finitary). Furthermore
he showed that if the type hierarchy is a tree then there is a single most

I general unifier.

Ait-Kaci and Nasr have given a unification algorithm for a more expressive

4,

IY
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class of taxonomic theories and propose using this algorithm in an implemen-

tation of the programming language PROLOG [Ait-Kaci & Nasr 86] Stickel
has investigated the use of taxonomic theories in even greater generality al-
though Stickel does not address unification as a mechanism for generating
var'able bindings (only the ground case is considered as lifting to the general
case is "straightorward") [Stickel 85].

Ontic's mechanism for inheritance via semantic modulation is based on
taxonomic information. More specifically, the Ontic system classifies each
focus object by associating each focus object with a set of tyoes known to be
true of that focus object. This classification process takes the type hierarchy
into account. For example if r is a focus object, a, is a type known to hold of
r, and the formula (IS-EVERY a r) is labeled true, then the classificatiun
piocess will collect r as a type kncwn to hold of r.

K: ofUnlike unification, Ontic's focused binding mechanism integrates the use
of type information with other theorem proving mechanisms. Ontic may
prove a statement about types and use that statement immediately in rlas-

.'., sifying the current focus objects. Ontic's focused binding mechanism auto-
matically incorporates arLitrary lemmas about the types of objects. There is
no guarantee, however, that ()ntic's focused binding mechanism will derive
all the logical consequences I ..xonomic information.

2.2.3 Higher-Order Unification

Unification has been generalized to ailow for higher-order variables; higher-
order unification can be used to bind variables that range over junctions and
predicates as well as variables ranging over first order terms. For example,

0 consider the induction schema for Peajo arithmetic.

-F P(O) A Vn (P(n) =. P(n + 1)) * Vn P(n) (2.1)

In this schema P is a variable which ranges over predicates. This schema
can be instantiated with any predicate P and higher-order unification can

5- be used to find bindings for P. For example consider a function f which is
us.t
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known to be monotone:*l "9r

Vm f(r + 1) _ f(m) (2.2)

and we wish to prove

'

Vn f(m) f(o) (2.3)

-A To prove this last statement a backward chaining theorem prover might unify
P(n) from the conclusion of 2.1 with the goal fn(m) > f(O) from 2.3. This
unification leads to the following bindings:

nt '-f m

P -4 (A(n) f(n) f(0))
A backward chaining inference system could then establish the antecedents

of 2.1 under the above binding for the predicate P.

The first complete unification procedure for higher-order logic was con-
structed by Gerard Huet [Huet 75]. Higher-order unification has been usedA"
effectively in at least two mathematical verification systems, Ketonen's EKL
system [Ketonen 84] and Andrews' TPS [Miller et al. 82]. In both sys-
tems the higher-order unification procedure was found to terminate quickly
in practice.

The Ontic system is higher-order in the same sense that axiomatic set
theory is higher-order; functions and predicates can be "reified" as sets and
thus first order variables can be made to range over functions and predicates.
In the Ontic system the user can focus on a reified predicate Q and thus cause
the system to bind variables to the predicate Q. This kind of "higher-order"
binding is used many times in the mathematical development given in the
appendix.

0. While the Ontic system does allow for higher-order reasoning, the Ontic
system does not adequately handle mathematical induction. Verifying in-

duction proofs in the On' ic system results in a large expansion factor; the

-N-4
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machine readable proofs are significantly longer than the natural language
counterpart.

Higher-order unification provides one technique for reducing the expan-
3ion factor for induction proofs. The EKL system relies on higher order
unification both in establishing the well formedness of recursive definitions
and in performing induction arguments to prove properties of recursively
defined functions. But there seem to be other, perhaps even better, Lech-

niques for reasoning about recursive definitions. The Boyer-Moore theorem
prover is extremely effective in performing induction arguments but does not
use higher order unification [Boyer & Moore 791. Ontic's weakness with re-
gard to induction arguments and possible ways of making Ontic's induction

mechanisms more powerful are discussed in section 3.2.2.
tflj

2.3 Inference Mechanisms Unlike Ontic's

This section surveys some of the general purpose inference mechanisms that
have been introduced in the past thirty years and compares these mechanisms
with Ontic's object-oriented inference mechanisms. Only general purpose in-
ference mechanisms are discussed here; domain specific mechanisms, such as

Chou's application of Wu's method for geometry theorem, will not be dis-
cussed [Wu 86] [Chou 84]. I will also not discuss decision piocedures for

particular theories or mechanisms for combining decision procedures [Nel-
son & Oppen 79] [Shostak 821.

This section briefly discusses some particular general purpose inference
systems. The automath proof verification systems used normalization of the

* typed lambda calculus as an inference mechanism. The Davis-Putnam proce-
dure was based on a direct enumeration of the Herbrand universe for a set of
first order sentences. The resolution procedure and its variants improved on
the Davis-Putnam procedure by introducing unification, thereby allowing a
large number of ground inferences to be abbreviated with a single resolution

*. step. The Boyer-Moore theorem prover finds induction proofs for verifying
equations concerning recursive programs in pure Lisp. The Boyer-Moore

theorem prover is based on user-defined (and machine verified) rewrite rules

.
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together with heuristics for generalizing induction hypotheses. The Knuth-
Bendix procedure provides a way of converting a set of unordered equations
into a set of rewrite rules for canonicalizing expressions. The Knuth-Bendix
procedure can also be used for proving certain equations about recursive
programs via an "inductionless" induction technique. Finally, a fair num-
ber of systems have been constructed which use automated theorem proving
support to verify natural deduction proofs.

4d.

2.3.1 Automath

The typed lambda calculus is closely related to intuitionistic (constructive)
proof theory. The analogy between typed lambda calculus and intuitionistic

-4 proof theory is based on viewing types as formulas and viewing a term of type
r as a proof of r (where r k viewed as a formula). If the formulas encoded
by types include quantifiers, i.e., if the type system has dependent types,
then it can be difficult to determine if a term u has type 7. More specifically,
determining if u has type r may involve normalizing (i.e. evaluating) the term
u. This normalization process can be viewed as inference where f reductions
correspond to either the inference rule of modus-ponens or the inference rule
of universal instantiation.

The relationship between types and formulas of intuitionistic logic un-
derlies one of the earlier mathematical verification systems, the Automath
system [deBruijn 68], [deBruijn 73]. The Automath system has been used

*" to verify Landau's Grundlagen, a book on the foundations of the integers,
rationals, reals, and complex numbers [Jutting 79]. The book includes a very
rigorous (almost formal) definition of each number system. The rationals are
defined as equivalences classes of pairs of integers, the reals are defined as
Dedekind cuts in the rationals, the complex numbers are defined as pairs of
reals. The book also includes proofs that the basic algebraic operations on
these numbers are well defined (e.g. addition of rationals, multiplication of
reals). No significant theorems are proven other than the well-formedness of
these basic definitions.

Even though Landau's grundlagen is an extremely rigorous (almost for-
mal) book, the version of the book readable by the Automath system is about

.4
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ten times as long as the Grundlagen itself. This indicates that the Automath
verifier does not use powerful automatic inference mechanisms; there is not
yet good evidence that normalization of the typed lambda calculus is a useful

S. automated inference mechanism.

2.3.2 The Davis-Putnam Procedure

The Davis-Putnam procedure [Davis & Putnam 601 is based directly on Her-
brand's theorem for the first order predicate calculus. Herbrand's theorem
implies that if S is an unsatisfiable set of first order formulas in Skolem nor-
mal form then there exists a finite set ' of ground instantiations of E such
that F is inconsistent. It is possible to write a computer program that decides
whether a set of ground formulas is consistent. To determine if the original

* -set E of first order formulas is satisfiable, one can simply enumerate all finite
ground instantiations r of E and test each one for consistency. If E is incon-

-J. sistent then by Herbrand's theorem one will find a ground instantiation F of
.1, S that ?s inconsistent.

The Davis-Putnam procedure is not used today; resolution theorem prov-
ing is more effective [Robinson 65]. The Davis-Putnam procedure spends
most of its time deciding the satisfiability of quantifier-free ground formulas.
Resolution theorem proving is more effective because a large (infinite) num-
ber of of ground inferences are summarized in a single resolution step. More

specifically, the formula generated by a resolution step can be viewed as a
universally quantified lemma which summarizes a large number of ground

"4 statements [Robinson 65]. Because other proof mechanisms (resolution) are
more effective than the Davis-Putnam procedure, the Davis-Putnam proce-

t.; dure will not be discussed further here.

0

2.3.3 Resolution and its Variants

Most research in automated theorem proving in the past twenty years has
been based in some way on resolution. The basic resolution rule was intro-
duced by Robinson in 1965 and shown to be refutation complete for first order
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predicate calculus [Robinson 65]. The resolution principle represented a clear
advance over the Davis-Putnam procedure because a single resolution step

abbreviates a large number of the ground inferences. However the number
of possible n-step deductions grows exponentially in n and it soon became
clear that resolution theorem provers could not, in practice, find significant
theorems by searching this large space of possible deductions.

The late sixties saw the development of a large number of restrictions on
the resolution principle. Each such restriction rules out certain resolution
steps and thus reduces the number of possible n-step deductions. In spite of

Y. the reduction in the number of possible inferences, various restricted forms
of resolution are logically complete. A description of various restrictions and
modifications of the resolution rule can be found in [Loveland 78]. Connection
graph resolution, a resolution restriction invented by Kowalski, is described

* in [Bibel 81].

One perceived difficulty with resolution theorem proving, in addition to
the large search spaces encountered, is the use of normal forms. Resolution

* requires that first order formulas be put in normal from in three stages. First,
all quantifiers are moved to the beginning of the formula resulting in a for-
mula in prenex normal form. Second, existential quantifiers are replaced by
skolem functions resulting in an equisatisfiable formula in prenex normal form

- - with only universal quantifiers. Finally, the matrix of the formula (the part
after the quantifiers) must be placed in conjunctive normal form resulting
in a set of universally quantified clauses where each clause is a disjunction
of literals. Several researchers have developed theorem proving techniques
which axe similar to resolution but which do not require the last normaliza-

Z. tion step: the matrix of the formula need not be in conjunctive normal form.'
Such "non-clausal" provers are described in [Andrews 81], [Murray 82], and
[Stickel 82]. These non-clausal procedures are similar to resolution in that

0 they use unification to find matches between formulas and matched formulas
are combined to generate new formulas. The non-clausal procedures are also
similar to resolution in that existential quantification is eliminated in favor
of Skolem constants.

O. Research in resolution theorem proving and related techniques has focused
. on establishing logical completeness. However, logical completeness may not

V.
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be important in practice. The Boyer-Moore theorem prover is clearly not
complete, it often terminates in failure, and yet the Boyer-Moore prover has
been been used effectively in more applications than has any other theorem
proving system.

As a side effect of focusing on completeness, the resolution theorem prov-
ing community has failed to make any distinction between "obvious" and

.'- "non-obvious" inferences. The failure to distinguish obvious and non-obvious
inferences makes it difficult to use resolution theorem provers in interactive
proof verifiers. Any interactive proof verifier based on resolution must have
some way of forcing the resolution process to terminate so that a proposed
proof step can be rejected in a finite amount of time. For example Bledsoe
built an interactive verifier which simply imposed a time limit on the reso-

..' lution process [Bledsoe 71]. A more principled restriction of the resolution
process has been introduced by Davis [Davis 81] and used in the Mizar sys-

* -- tern [Trybulec & Blair 85]. However the restriction proposed by Davis forces
the decision procedure for obvious inferences to determine the satisfiability
of an arbitrary set of ground clauses. Determining the satisfiability of a set
of ground clauses is known to be NP-complete. Furthermore, as far as I
know, there has never been a detailed comparison of natural arguments and
theorems provable under Davis' suggestion.

2.3.4 Rewriting Mechanisms

Automated inference systems often have - hard time dealing with equality
and equational axioms. Directed rewrite systems provide one approach to
reasoning about equality. The process of rewriting expressions is also known
as simplification, symbolic evaluation or demodulation. Rewrite systems iter-

* atively simplify a given expression until it is in canonical form. A statement
--[ can be proved by rewriting it to the constant true.

Some of the most effective theorem proving systems are based on rewrite
mechanisms. Most notably, the Boyer-Moore theorem prover uses a sim-
plification mechanism guided by user defined (but machine verified) rewrite

,.: rules [Boyer & Moore 79]. The Boyer-Moore theorem prover has been used to
verify a wide variety of theorems from number theory, recursive function the-

'.
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ory, formal logic and software and hardware verification [Boyer & Moore 84],
Az [Shankar 85], [Russinoff 85], [Boyer & Moore 86]. The real power of the Boyer-A

Moore prover comes from its ability to perform induction proofs. However
the simplification (rewrite) mechanism is central to the system.

The Boyer-Moore prover is primarily used to prove equations between
term? defined in pure Lisp. Once an equation has been proven it is treated

* ~1as a rewrite rule to be used in future proofs. The direction of each newly
proven rewrite rule is provided by the human user, e.g. when the system

proves an equation s = t the human user specifies whether this equation

- should be treated as s - t, which rewrites s to t, or as t -- ., which rewrites
t to s.

Ketonen's EKL system is another example of a verification system based
%- on user defined rewrite rules [Ketonen 84]. As in the Boyer-Moore prover,

the direction of EKL rewrite rules are specified by the human user. Unlike

. the Boyer-Moore prover however, the EKL system uses Huet's higher order

unification procedure to perform induction proofs. The EKL system lacks
the facility for generalizing induction hypotheses used in the Boyer-Moore
prover.

p." Knuth and Bendix developed a powerful method for constructing decision
procedures for certain equational theories [Knuth & Bendix 69]. Unlike the
Boyer-Moore prover and the EKL system, the Knuth-Bendix procedure can
be used to automatically convert undirected equations to directed rewrite

rules. More specifically, equations can be ordered via a general (but user
specified) order >- on terms. If s >- t then the equation s = t becomes the
rule s --- t; if t >- s then the equation s = t becomes t - s. The partial order

*>- used in the Knuth-Bendix procedure must be well founded, respect term
structure, and obey substitutions (see [Knuth & Bendix 69] for details).

After ordering equations into rewrite rules, the Knuth-Bendix procedure
'j can also be used to automatically construct additional "derived" rewrite

rules. More specifically, given a set of unordered equations, and an acceptable
partial order >- on terms, the Knuth-Bendix procedure both converts equa-
tions to rewrite rules and constructs additional rewrite rules whose validity
follows from the original equations. The set of rewrite rules that results from

applying the Knuth-Bendix procedure to a set of E is often much larger than

0.%
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V4-S. If the Knuth-Bendix procedure terminates with success it generates a set
of rewrite rules that completely canonicalize expressions relative to the given
equations; by canonicalizing expressions one can determine if two terms can
be proven equal from the original set of equations. Unfortunately, however.

the Knuth-Bendix procedure does not always succeed; it can either terminate
in failure or fail to terminate.

The Knuth-Bendix procedure has been used extensively in system which
manipulate equational specifications of computer programs and equational
programming languages [Kapur et al. 86] [Lescanne 86] [Huet 86]. These
systems are based on an equational view of programming in which computer
data structures are viewed as terms constructed from atomic symbols (Lisp
atoms) and "data constructor functions" such as the Lisp function CONS. Re-
cursive functions can be defined via equations involving the defined function

4 tsymbols [Guttag & Horning 78] [O'Donnell 85].

The Knuth-Bendix procedure can also be used to generate "induction
arguments" of the type performed by the Boyer-Moore theorem prover [Huet
& Hullot 83]. More specifically, consider the closed (variable free) terms
which can be constructed from a set of "atoms" (constructor functions of no
arguments), constructor functions (functions such as CONS which construct
data objects), and defined functions. A "data object" is a term with no
defined functions. Let E be a set of equations which defines the defined
function symbc' as operations on the data objects, i.e. no two data objects
can be proven equal from E and every closed term involving defined functions
can be proven (under 5) to be equal to some data object. Now suppose we
wish to prove some equation s = t where s and t are distinct teris involving
defined functions and free variables. For example the equation s = t might
state the associativity of the APPEND function on lists. The equation s = t
holds in the data object universe just in case there is no counter example,
i.e. no ground variable substitution a such that a(s) denotes a different
data object from a(t). If there exists a counter example to the equation
s = t then adding this equation to E would allow one to prove an equation
between two distinct data objects. The Knuth-Bendix procedure can be used

* (in some cases) to convert E U {s = t} to a complete set of rewrite rules.
By examining this set of rewrite rules it is possible to determine whether
E U {s = t} allows one to prove an equation between distinct data objects. If

4
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such equation is provable then the equation s = t has a counter example. If
no such equation between distinct data objects is provable from E U {s = t}

then the equation s = t has no counter examples and must be true in the
V data object universe. In general it may be possible to show that s = t has

_- - counter examples at an intermediate point in the Knuth-Bendix procedure;
thus a complete set of rewrite rules for U _ {s = t} may not be required.

One problem with the Knuth-Bendix procedure however is the need for
a single partial order on all expressions. There may be domain specific intu-
itions about how terms should be rewritten and it is difficult to incorporate
such knowledge into a single uniform term ordering. While some sophisti-
cated partial orders have been developed [Dershowitz 79], it is not yet clear
whether a uniform term ordering can be used for the large verifications that
have been done with the Boyer-Moore prover.

Like unification research, research on term rewriting systems using the
Knuth-Bendix mechanism has centered on the notion of logical completeness.
There are many equational theories E with an undecidable set of logical
consequences (an undecidable word problem) and in this case the Knuth-
Bendix procedure either terminates in failure or fails to terminate. In systems
based on the Knuth-Bendix procedure it is not clear what to do when the
procedure fails. Even if a complete set of reductions is found, the time
required to perform the rewriting may be prohibitively large. The rigid
framework of the Knuth-Bendix procedure may make it difficult to perform

"the large verifications that have been done with the Boyer-Moore prover; it is
not clear that a Knuth-Bendix based system could verify the RSA encryption
algorithm or the undecidability of the halting problem as has been done with
the Boyer-Moore system [Boyer & Moore 84] [Boyer & Moore 86].

Rewrite systems are designed to handle equational theories. The Ontic
0 system handles equality with its congruence closure mechanism; rewrite rules

are not used. The congruence closure mechanism can be quite powerful in
practice. Figure 2.1 gives an example of an ;nference done using Ontic's

Ycongruence closure mechanism. Consider a distributive lattice with a least
member 0 and a greatest member 1 (a lattice with a least and greatest mem-
ber is called bounded). If x and y are members of the lattice L then we say
that x and y are complements if the meet of x and y is 0 and the join of

J-:.
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(IN-CONTEXT ((LET-BE L (AND-TYPE DISTRIBUTIVE-LATTICE
BOUNDED-LATTICE))

(LET-BE X (IN-U-SET L))
(PUSH-GOAL

(AT-MOST-ONE (COMPLEMENT-OF X QM)))

(IN-CONTEXT ((SUPPOSE (EXISTS (COMPLEMENT-OF X L)))
(LET-BE Y1 (COMPLEMENT-OF X L))
(LET-BE Y2 (COMPLEMENT-OF X L)))

(NOTE-GOAL))

(NOTE-GOAL))

Ontic "sees" this theorem using its congruence closure mechanism as follows:

Y= y A 1 A previously established fact.

= Yi A (Y2 V X) Because y2 is a complement of x.

= (y, A Y2) V (yx A x) By definition of a distributive lattice.

= (y, A y2) V 0 Because y£ is a complement of x.

= (y, A Y2) V (Y2 A x) Because Y2 is a complement of x.

= ( 2 A y9) V (y2 A x) Because A is commutative.

, = Y2 A (Yi V x) By definition of a distributive lattice.

= Y2 A 1 Because yi is a complement of x.

= Y2 Because y2 = Y2 A 1

Figure 2.1: A statement that is obvious to Ontic but not obvious to people

vtt
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x and y is 1. It was obvious to the Ontic interpreter that in any bounded
distributive lattice a given member x has at most one complement. Ontic's
proof of this fact, also shown in figure 2.1, uses congruence closure.

Figure 2.1 shows that congruence closure is a powerful technique for rea-
jsoning about equality. Because Ontic handles equality with congruence clo-

sure rather than rewrite rules, there is no need for the user to specify rewrite
directions for equations; the Ontic system can handle undirected declarative
equations. The value of declarative as opposed to procedural representations
is discussed in more detail in section 2.4.2.

2.3.5 Natural Deduction Systems

Natural deduction systems are based on "natural" rules of inference. A given
rule says that a goal G of a certain form can be proven by reducing the goal
G to the subgoals G1, G2 ... G,,. Different rules provide different ways of

. achieving a goal where the success of any one rule is sufficient. The earli-
est natural deduction system was Newell, Shaw and Simon's Logic Theorist
[Newell, Shaw & Simon 57]. This system used natural deduction rules and
backward chaining to prove theorems in Whitehead and Russell's Principia
Mathematica. Soon after the construction of the Logic Theorist, Gelernter
constructed his program for finding proofs in Euclidean geometry [Gelern-
ter 591. Gelernter's system also used backward chaining and natural deduc-
tion rules but the subgoals were pruned by the use of a diagram, i.e. a model
of the assumptions in the proof. If a subgoal was false in the diagram then
the system could infer that the subgoal could not be achieved and thus should
be abandoned.

* During the sixties research in automatic theorem proving focused pri-
marily on resolution theorem proving. However, during the early seventies
frustration with resolution systems lead to a renewed interest in natural de-
duction systems [Bledsoe 77]. Natural deduction systems from the seventies
include [Bledsoe 71], [Nevins 72], [Bledsoe et al. 72], [Reiter 73], [Ernst 73],
[Goldstien 73], [Bledsoe & Bruell 73], and [deKleer et al. 77]. These later
natural deduction systems often used resolution as a subroutine for prov-
ing subgoals. A time limit was imposed on resolution proofs to force the

S@-|
i..%



".

68 CHAPTER 2. COMPARISON WITH OTHER WVORIK

resolution theorem prover to terminate quickly [Bledsoe 711.

- One of the major problems with using resolution as a test for "obvious"
-"r subgoals was the tendency of resolution to get lost when it was given too many

initial facts. In other words resolution was not able to automatically find the
_' relevant facts in a large lemma library. As Bledsoe says in [Bledsoe 71]:

One of the more serious [problems is referencing]. The cor-
-l puter should be able to bring to bear "all it knows" (all definition

axioms and previously proven theorems) ... But if one attempts
a resolution proof on a large number of formulas, the result is the
production of a glut of irrelevant clauses and sure failure, even

.-- ,when the best known search strategies are used. Thus the crucial
*-1_: part of a resolution proof is the selection of the reference theo-

*0 reins by the human user; the human, by this one action, usually
employs more skill than that used by the computer in the proof.

-' It is useful to remember that this was written in 1971, well after most of
the refine - ents to resolution had been developed. These comments about
the ineffectiveness of resolution on large lemma libraries are probably as true
today as they were in 1971. The Ontic interpreter on the other hand seems
to handle large lemma libraries without difficulty. It would be interesting to
reconstruct these old natural deduction systems using the Ontic interpreter
rather than resolution to test for obvious subgoals.

The Seventies also saw a development of basic natural deduction proof
checking systems that did not provide much automated reasoning support.
For example McDonald and Suppe5 developed an interactive proof checking

-.: system for teaching an introductory logic course [McDonald & Suppes 84].
Richard Weyhrauch also developed the FOL system for checking first order

' logic proofs [Weyhrauch 77].

While the FOL system does not provide sophisticated general purpose
. theorem proving, it does provide a uniform mechanism for associating any

given predicate or function symbol with a computer program for computing
C.5€ the value of the predicate or function on "semantic" arguments. It seems clear

-I- that mathematical verification systems could benefit from the addition of

k.%% N
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computationad oracles. Along with procedures for basic arithmetic (addition
multiplication etc.) one can imagine incorporating procedures for symbolic
integration, series summation, or polynomial manipulation. No attempt has
been made to incorp. rate such features into the Ontic system.

Procedural attachment is part of a general focus on -metatheory" within
the FOL system [Weyhrauch $01. While procedural attachment has clear

N' potential value. I think the emphasis on metatheory is misplaced. There
seems to be a fundamental unity in all mathematics; there is no fundamental
distinction between "metamathematics", number theory, graph theory, fi-
nite combinatorics, or real analysis. A system which reason about numbers,

* 4 graphs, and ordered sets can just as easily reason about formulas, models,
.'1 z.nd Tarskian truth functions.

* During the late seventies and into the eighties there has been an empha-
sis on "programmable" natural deduction systems. These systems provide a
mechanism for adding user defined inference rules. The first programmable
natural deduction system was Edinburgh LCF [Gordon, Milner & Wadsworth
79]. A more recent programmable natural deduction system is the Nupri sys-
tem developed by Bates and Constable [Constable et al. 861 [Howe 86]. The
Nuprl system grew out of research in interactive verifications systems [Con-
stable et al. 82] and their use in teaching formal logic and formal approaches
to program verification. The Nupri system is based on constructive type
theory and places particular emphasis on finding constructive proofs. The
system provides a facility for converting a constructive proof that a certain
number exists into a program for computing that number.

Backward chaining natural deduction systems use rules of inference to-b
convert a given goal to a set of subgoals. In the Nupri system the user
can define new inference rules, or "tactics", for converting a goal to a set of

* subgoals. When a tactic replaces a goal G by a set of subgoals G1, G , ...

G, the tactic must construct a proof showing that the replacement is sound,
i.e. that the subgoals G1 , G 2 7 ... G,, imply the goal G. One could write a

,' tactic for showing that any given set S is a subset of U by supposing that
S is non-empty and then considering an arbitrary member of S. One could

* then u-xe this tactic as a subroutine and write another tactic for showing that
two sets are equal by showing that each is a subset of the other. In the

6
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-- Ontic system one has to repeat this style of argument every time one wants
- to prove set equality. it seems likely that tactics could be used in the Ontic
S"-/ system to reduce the length of machine readable proofs. On the other hand

it seems likely that Ontic's object oriented inference mechanisms could be
used to reduce the length of proofs in the Nuprl system.

2.4 Issues in Automated Reasoning

There are several general issues involved in the construction of proof verifi-
cation systems. First, in designing a verification system one should conside
the expressive power of the formal language invoived. Does the :anguage

* allow ene to express a wide variety of formal concepts and arguments? Sec-
oad, one should consider the extent to which the knowledge base contains
procedural as oppobed to declarative information. Procedual infcrmation

. may help mak-e the system run more effectively but procedural intormation
Is harder to construct and a reliance on procedural information makes au-
tomatic discovery of useful information more difficult. Third, one should

VP consider whether the system should rely on backward or forward chaining.
- It is not clear whether forward chaining has any intrinsic advantage over

backward chaining or vice versa. In both cases the basic problem is to con-
.-w. trol the generation of facts or subgoals. Simplification seems to be effective

as a guiding principle in backward chaining while focus seems to be effective
as a guiding principle in forward chaining.

2.4.1 Expressive Power

Some very restricted formal languages have tractable inference problems:
there exists a tractable procedure tor determining the validity of any state-

meat expressible in the language. Thus there seems to be a trade off between
expres-iive power and computational tractability in knowledge representation
L!.,ages 'Levesqu: & Brachman 85]. Hov, ever this "trade off" is mislead-
ing. In order to desgn a language with a tractable inference problem one
must design a language in which hard questior,' can not ie asked. But this

'C-
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does not produce the result one really wants; rather than making it easier
'S to answer hard questions, limiting the expressive power of a language simply

makes i . impossible to ask hard questions. On the other hand, increasing
the expressive power of the reasoning language can make it easier to reason
about hard questions.

Natural mathematics (mathematics done in natural language) seems to
have a notion of "well typed" expressions. For example consider the well
typed phrase

"the value of the map f on the point x"

as opposed to the "garbled" phrase

0

"the value of topological space X on the point z"

- The notion of a well typed natural phrase seems to correspond to the notion
of a well typed formal expression. Mathematicians talk about groups, rings,
fields, topological spaces, differentiable manifolds, groups homrnomorhisms,

..differentiable maps and much more. It seems that in natural mathematics
' .tany definable set (or class) can be used as a type in determining the set of
* y well typed phrases. Most strongly typed formal systems, however, do not

allow arbitrary predicates to be used as types.

In designing a type system there appears to be a trade off between ex-
pressive power and computational tractability. One can ensure conuta-
tional tractability b'y restricting the type system so that only certai< imple
predicates can be used as types. Restricted type systems can not express nat-
ural types such as "prime number", "symmetric matrix", or "transitive re-
duced graph". While the inability to express such types makes type-checking

tractable, it prevents the type-checking process from even attempting to ver-
ify certain semantic properties of programs. It seems likely that one could
construct a quickly terminating type-checking procedure which could verify

S,. all simple types and could also verify some more difficult "semantic" types.
Restrictions on the vocabulary of types does not make it easier to answer
hard questions, it only makes hard questions impossible to ask.
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2.4.2 Declarative Representations

Many automated inference systems require every declarative fact to be aug-
mented with procedural information: information about how the declarative
fact is to be used in the inference process. Purely declarative facts, facts not
augmented with procedural instructions, have the advantage that they are
easier to generate - it seems easier for people to write down a set of purely
declarative facts than to write down both the declarative facts and additional
information about how those facts are to be used. The ease of generating
purely declarative facts may be particularly important in discovery systems

- systems which automatically generate new lemmas. The task of discover-
ing and using new facts is easier if one does not have to specify procedural
information each time a new fact is discovered.

I Unfortunately, purely declarative facts have the disadvantage that they

are more difficult to compute with. Ketonen has discussed the difficulty of
constructing effective theorem provers that use purely declarative informa-
tion [Ketonen 84]. In supporting the use of procedural information Ketonen
considers the following formula:

P(x) =* A = B

Ile argues that there is no single way to use this formula and lists the following
*1 possible procedural interpretations:

1. Replace P(z) - A = B by true whenever it appears.

2. Replace A = B by true if one can prove P(x) in the current situation.

3. Replace P(x) by false if one can prove A $ B.

4. Replace A by B whenevcr one can prove P(x).

5. Replace B by A whenever one can prove P(x).

6. Replace A by B whenever one can prove P(x) but not in terms resulting
from this substitution.

taf
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Ketonen argues that one must choose between the above procedural inter-
pretations. Interpretations (4) and (5) seem opposite in intent. Furthermore
formulas involving quantifiers would have an even greater number of different
interpretations. Ketonen concludes that the user must specify how formulas
are to be used.

*aIt seems that Ketonen's difficulty with purely declarative representation

comes from his commitment to rewrite systems. Ontic's inference mechanism
effectively uses intei, -tations (1) through (5) simultaneously. Replacing a
formula 4) by true in a rewrite system is analogous to putting the label true
on the node for -0 in the Ontic's marker propagation mechanism. In the On-
tic system Boolean constraint propagation handles the procedural interpre-
tations (1) through (3) above. In the Ontic system equalities between nodes
are represented by giving those nodes the same color label. This representa-

*l tion of equality together with the congruence closure mechanism effectively
handles both procedural interpretations (4) and (5). The 6th procedural in-

a"- terpretation seems a little strange and is not handled in the Ontic system -
congruence closure effectively performs all substitutions.

One of the primary features of the Knuth-Bendix procedure is that equa-
-or tions are automatically converted to rewrite rules using a single partial order

that is defined for all terms. Thus, once the partial order has been defined,
*purely declarative equations are automatically given procedural interpreta-

tions. However the Knuth-Bendix procedure is not guaranteed to succeed: it
may terminate without producing a complete set of rewrite rules or it may
run forever in attempting to generate such a set. Furthermore, because the
Knuth-Bendix procedure produces rewrite rules, it must choose either proce-
dural interpretation (4) or interpretation (5) - the Ontic system effectively

* a does both simultaneously. The effectiveness of the Knuth-Bendix procedure

in large verification applications has not yet been established.

Further experimentation is needed to see if systems which use purely
declarative information, such as Ontic, can be made as effective as systems
which are based on rewrite rules, such as the Boyer-Moore theorem prover.

i'
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2.4.3 Forward Chaining

Forward chaining systems start with a set of premises and derive conclusions
-4 from those premises. Backward chaining systems start with a goal and reduce

that goal to subgoals. It is not clear whether forward chaining has any
- intrinsic advantage over backward chaining or vice versa. In both cases the

basic problem is to control the generation of facts or subgoals. Both forward
chaining and backward chaining systems can become swamped in a sea of
derived facts or derived subgoals. Certain sources of guidance seem to work
for backward chaining and other sources of guidance seem. to work for forward
chaining.

Simplicity seems to work as a guiding principle in backward chaining.

Rewrite systems are backward chaining because they start with the expres-
sion to be proved and rewrite that expression in an attempt to show it equiv-
alent to the constant true. Rewrite systems are guided by some notion of
simplicity: a goal expression is always replaced by a simpler goal. The notion
of simplicity is either implicit in the user specified rewrite rules, as in the
Boyer-Moore prover, or explicitly defined as an ordering on expressions, as in
Knuth-Bendix based systems. In both cases however a notion of simplicity
guides the generation of subgoals.

Focus seems to work as a guiding principle in forward chaining. Ontic's
object oriented inference mechanisms are guided by the restriction that de-

W,' rived facts must be about the focus objects. A similar restriction is used

in other forward chaining systems such as Nevins' geometry theorem prover
[Nevins 74], constraint systems such as Waltz labeling [Waltz 75], and con-
straint languages such as that described by Sussman and Steele [Sussman &

.' Steele 80].

It should be possible to integrate both backward and forward chaining in
a single system. In such a system simplification should be used as a guiding
principle in backward chaining and focus should be used as a guiding principle
in forward chaining.
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~Chapter 3

:o:.Ontie as a Cognitive Model

. One can attempt to evaluate Ontic as a model of human mathematical cog-
F , nition by comparing the formal "proofs" that are acceptable to the Ontic

: -, system with the natural language proofs that are acceptable to people. There
• % are some clear differences between Ontic proofs and natural arguments. In
~certain caseb the Ontic system can verify proof steps that are not obvious
~to people; we say that Ontic exhibits superhuman performance. In other

cases there are statements which are obvious to people but which require
_ multi-step proofs in the Ontic system; we say that Ontic exhibits subhuman

performance. The superhuman performance and much of the subhuman per-
formance can be attributed to specific computational aspects of the Ontic

- .; system.

Ontic's congruence closure mechanism provides a clear example of su-
% perhuman performance. The Oj ltic system can use its congruence closure
.0__ mechanism to "see" that in a d stributive lattice complements are unique.

This fact is not obvious to people. The appendix contains several examples of
' :t superhuman performance based on congruence closure. All of the exampies
-€ involve lattice theoretic identities. One example is the proof of de Morgan's

Slaws from the the agbicaxioms for aBoolean lattice.

16 After giving examples of superhuman inference based on congruence clo-

-- , sure, a very fast computationally limited architecture is proposed for mas-
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76 CHAPTER 3. ONTIC AS A COGNITIVE MODEL

sively parallel computation. Boolean constraint propagation can be easily

implemented in this massively parallel architecture but congruence closure
S can not. Substitution constraints are then proposed as an alternative to con-

gruence closure. Substitution constraints perform many of the substitution
inferences normally done by congruence closure. Furthermore, substitution
constraints can be handled by Boolean constraint propagation and thus can
be implemented on the proposed massively parallel architecture. However,
substitution constraints do not generate the given examples of superhuman
performance.

Of course te Ontic system also exhibits subhuman performance. Some
cases of subhuman Ontic performance can be traced to weaknesses in the

y. lemma library. Several proofs could be shortened by adding lemmas which
introduce the principle of duality for Boolean lattices and the algebraic "def-
inition" of a lattice. A more significant set of examples of subhuman Ontic

* performance involve mathematical induction. Although the Ontic system
. can be used to verify induction arguments, the expansion facto is large. In

natural mathematics induction arguments are often unstated and unnoticed
even though people understand the arguments and agree to their validity.
For example consider a graph where the nodes of the graph are colored such
that any two nodes with an arc between them have the same color. Clearly
if nodes n and m have different colors then there is no path between them in
the graph. To verify this clear and obvious fact with the Ontic system would
require an induction ou the length of paths. There are many other examples
from both mathematics and common sense where induction arguments seem
to be carried out at a subconscious level.

Future experimentation will certainly turn up additional ways in which
the Ontic system exhibits subhuman performance; hopefully examples of sub-

human performance will lead to the discovery of additional inference mech-
anisms that bring the system closer to human ability in verifying natu.al
arguments.

9O.
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3.1 Superhuman Performance

Congruence closure accounts for all the examples of superhuman performance
of the Ontic system. The mathematical development given in the appendix
contains six examples of superhuman performance based on congruence clo-
sure. All of these examples involve reasoning about lattice identities.

3.1.1 Examples of Superhuman Performance

The first example of superhuman Ontic performance is the proof that in
a distributive lattice complements are unique. This example is given in chap-
ter 2 and is discussed in more detail below. The second example is the proof
of de Morgan's laws for complemented distributive lattices. De Morgan's
laws are straightforward if one assumes that Boolean operations have their
standard meaning as operators on sets, or equivalently, if Boolean operations
have their standard meaning as operations on truth functions. However, un-
til one has proven the Stone representation theorem one must consider the
possibility that there exist pathological complemented distributive lattices in
which the Boolean operations can not be viewed as operations on sets or as
truth functions. The Ontic proof of de Morgan's laws and an analysis of that
proof are shown in figure 3.1. Given several previously established simple
identities for Boolean lattices the Ontic system immediately "sees" that de
Morgan's laws are true in an arbitrary complemented distributive lattice.

The mathematical development in the appendix also contains a proof that
for any elements x and y of a complemented distributive lattice the following
are equivalent:

V. 1. x~y

2. y<5x*

3. xAy%=O

4. x* Vy=l

'p
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An Ontic Proof:

(IN-CONTEXT ((LET-BE B BOOLEAN-LATTICE)
(LET-BE X (IN-U-SET B))
(LET-BE Y (IN-U-SET B))
(LET-BE CX (COMPLEMENT X B))
(LET-BE CY (COMPLEMENT Y B))
(LET-BE M (MEET X Y B))

(LET-BE J (JOIN CX CY B)))
(NOTE (IS J (COMPLEMENT-OF M B))))

A Corresponding Natural Argument:

*Let x* and y" be the complements of x and y respectively. Let
m be the meet of x and y and let j be the join of x' and y'. We
must show that m and j are compliments, i.e. that m A j - 0
and m V j = 1. This can be done as follows:

m A (x" V y) = (m A x) V (m A y') By distributivity of A over V.

= ((xAx*)Ay) V((yA y*)Ax) By assoc. and comm. of A.

= (GAy) V (0 Az) By definition of complement.

= 0 By algebraic properties of 0.

(x A y) V j = (x V j) A (y V j) By distributivity of V over A.

- (y' V (x" V x)) A (x" V (y" V y)) Dy assoc. and comm. of V.
6

, (y" V 1) V (x" V 1) By definition of complement.

-1 By algebraic properties of 1.

Figure 3.1: An example of superauman Ontic performance.

1/



3.1. SUPERHUMAN PERFORMIANCE 79

The Ontic proof of the equivalence of the above facts is done by showing
that 1) = . 2) = 3) =t 4) =- 1). This is done in a context where the unique-
ness of co.aplements and de Morgan's laws have already been established.
For each implication there is a set of four focus objects which makes the im-
plication obvious to the Ontic system. The proof of each implication shows

Nr superhuman performance involving congruence closure.

3.1.2 A Very Fast Parallel Architecture

*, 1. This section proposes an architecture for massively parallel computation and

argues that, unlike Boolean constraint propagation, congruence closure is
difficult to implement on this architecture. 1 People make truth judgments
about obvious statements in about a second. Although the computation
performed by neurons is not well understood, it is clear that neurons run very
slowly. It seems likely that neurons would require one to ten milliseconds to
compute the logical and of two Boolean signals. If people are computing
truth judgments with Boolean circuitry, and if the gate delay for neuronal
hardware is on the order of one to ten milliseconds, then people make truth
judgments about obvious statements in 100 to 1000 gate delays. Computing

% complex truth judgments in only 100 to 1000 gate delays requires massive
parallelism.

Consider a finite state machine where the state of the machine at time i
is given by an n-bit bit vector Di. The state transition table of the machine
can be given by a Boolean circuit 4) of n inputs and n outputs where the
state transitions of the machine are governed by the equation

Di+1 = 4 (Di)

To make the finite state machine run quickly the Boolean circuit 4D should
have low depth, say ten gates. If -t has depth ten then a state transition can

4it is easy to show that Boolean constraint propagation is polynomial time complete

and thus "unparalelizable"; the worst case running time on a parallel machine is linear in
the size of the graph. In many cases however, a parallel implementation would run much

9" faster than a serial implementation; a parallel implementation runs in time proportional to
the longest single inference chain while a serial implementation runs in time proportional
to the total number of inferences.

.

904
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so CHAPTER 3. ONTIC AS A COGNITIVE MODEL

be computed in ten gate delays. However, the bit vector defining the state

of the machine can be very large: millions or tens of millions of bits, and the
"* circuit 4) can involve millions or tens of millions of gates.

It seems possible to compile an Ontic graph structure into a Boolean
circuit governing a finite state machine. More specificly, a labeling of an Ontic
graph could be encoded in the state bit vector of the machine. The basic
inference operations on graph labels could be incorporated into a Boolean
circuit $ governing state transitions. Two bits are needed for each formula
node to represent the three possible labeling states of the node: true, false and
unknown. Boolean constraints on formula nodes could be compiled directly
in the structure of the Boolean circuit . Every node in an Ontic graph is
also associated with a color label. The color label for a given node in the
graph could be represented with a set of bits in the machine's state vector.

*g The Boolean circuit governing state transitions could be designed in such
a way that if an equation node became true then the color labels of the
equated nodes at time i + 1 would each be set to the maximum of the two
labels at time i. In this way the color labels could be made to respect the
truth of equality formulas. With the exception of congruence closure, all of
the inference techniques used in the Ontic system seem to be amenable to a

-' massively parallel implementation in a low-depth Boolean circuit governing
.-. a finite state machine.

The implementation of congruence closure described in chapter 5 uses a
hash table to map color tuples to colors. In order to implement a hash table
one needs to be able to compute memory addresses for a random access

-: memory. I don't see any way of implementing parallel access to a large hash
table in a low depth Boolean circuit governing a large finite state machine.

Congruence closure can be replaced with substitution constraints as de-
scribed in the next section. Substitution constraints are Boolean constraints
involving equality formulas; such constraints can be compiled directly into a
low-depth Boolean circuit governing a finite state machine.

6
"I
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3.1.3 Substitution Constraints

A, Substitution constraints provide an alternative to congruence closure for rea-

soning about equality. Substitution constraints rely on Boolean constraint
propagation's ability to handle certain equality inferences. Boolean con-

. straint propagation ensures a simple relationship between the truth of equal-

ity formulas and the color labels encoding equivalence. Boolean constraint
propagation, however, does not automatically handle the substitution of
equals for equals; in the Ontic system substitution is handled by congruence
closure. On the other hand, Boolean constraint propagation can be made to
handle substitution by adding certain Boolean constraints called substitution
constraints. Boolean constraint propagation with substitution constraints is
weaker than congruence closure in that it generates fewer obvious truths in

*a given context.

As a simple example of a substitution constraint consider a term f(c)
which consists of an operator f applied to a specific argument c. We can

-K' assume that the operator f is defined on objects of a certain type r and that

c is an instance of r. Suppose that g is a generic individual of type r. To
ensure that inheritance works properly one can add the Boolean constraint

g= = . f(g)=f(C)

Now if the system ever generates a binding g t- c then g and c will get

the same color label and Boolean constraint propagation will ensure that
the equation g = c gets labeled true and thus, by the above substitution
constraint, the equation f(g) = f(c) will be labeled true. Independent of
congruence closure, if f(g) has the same color label as f(c) then certain facts
about f(g) can be inherited by f(c). For example if f(g) is known to be

. an instance of a type r then f(c) will also be known to be an instance of
the type a. Thus the above Boolean constraint allows the binding g i-. c to

cause c to inherit facts that are stated in terms of g.

Substitution constraints can be used to perform inferences based on the
substitution of equals for equals. Suppose that c is known to be equal to
b and consider the terms f(c) and f(b). Furthermore assume the graph

. structure underlying Boolean constraint propagation includes the following

3.4
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substitution constraints

g=b f(g)=f(b)

Now suppose that the system focuses on c and generates the binding g '-* c.
Since c and b are known to be equal, the nodes for g, c, and b will all get the

* .. same color label. Thus the equations g = c and g = b will become true. Thus

both the equations f(g) = f(c) and f(g) = f(b) will become true and the
nodes for f(g), f(c) and f(b) will all get the same color label. Thus focusing

.. on e causes the system to deduce that f(c) equals f(b). This scheme fo

2" handling substitution of equals for equals via substitution constraints can be
: suitably generalized to handle operators of more than one argument.

@ Unlike congruence closure, substitution constraints combined with fo-
cused binding and Boolean constraint propagation will only substitute equals
for equals when the expressions being substituted for are focus objects. All
of the examples of superhuman Ontic performance involve substitutions of
non-focused expressions.

3.1.4 Superhuman Performance Re-Examined

It is important to note that the scheme for equality inference based substitu-
tion constraints is not as powerful as the full congruence closure mechanism.
More specifically, using substitution constraints the substitution of equals for
equals can only be done when the substituted expressions are equal to some
focus object. All of the examples of superhuman performance discussed above
involve substitution for non-focused objects. For example consider the proof

shown in chapter 2 that in a distributive lattice complements are unique.
The uniqueness of complements is obvious to the Ontic system.

Figure 2.1 in chapter 2 shows the Ontic "proof" that complements are
unique together with an expanded derivation showing how the Ontic system
proved that if Y, and Y2 are both complements of x then y, must equal Y2.

The second line in the expanded derivation is derived by replacing 1 with
(Y2 V x) even though neither 1 nor (y2 V x) is a focus object. If congruence

.;
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inference required focusing on the substituted expression then the second line
could only be derived by focusing on Y2 V x. Similarly, line four is derived by
substituting 0 for yi A x even though y, A x is not a focus object. Lines five
and seven also involve substitution for non-focused expressions.

Even the weaker scheme based on substitution constraints could prove
that cornplements are unique in a single inference step if the system focused
on x, yl, y2, Y2 V x, yi A x, Y2 A x and Y2 V x all at the same time. However,
it seems that people have a hard time focusing on seven objects simultane-
ously. The ability of the Ontic system to focus on a large number of objects
simultaneously is perhaps anothet ziource of superhuman performance.

3.2 Subhuman Performance

Some proofs in the appendix exhibit subhuman performance which can be
attributed, at least in part, to weaknesses in the lemma library. Other ex-
amples, not given in the appendix, indicate weaknesses in the fundamental
inference architecture. It is hoped that examples of subhuman performance
lead to new inference techniques which increase the usefulness of verification
systems.

3.2.1 Weaknesses in the Lemma Library

The lemma library developed in the. appendix does not include a dualiL
principle for Lattices. Given an appropriate duality principle the proof of
any identity in lattice theory would lead immediately to a proof of the dual
identity. For example consider de Morgan's laws. A first de Morgan law can
be phrased as follows.

( v y). . :

A second de Morgan's law can be derived ire_ ' he first via a duality principle
* for Boolean lattices: the result of switching V and A (and 1 and 0) in any

Boolean lattice identity leads to another Boolean lattice identity. Given the
duality principle for Boolean lattices the validity of the above de Morgan law

I
4
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leads immediately to the validity of the dual law:

(x A y)" = x" V y*

One could incorporate the duality principle into the Ontic system by defining
the dual of a lattice. Given anv 'ti. or any partial order) the dual of the
lattice is defined to be that lattice which has the same elements but in which
the partial order has been reversed. Using the Ontic system one could easily

aM define a function which mapped any lattice to its dual lattice. Furthermore
one could prove that if L' is the dual of a Boolean lattice L then L' is a

-d Boolean lattice such that the meet operation in L' equals the join operation

in L, the join operation in L' equals t, he meet operation of L, and L' has
the same complement operation as L. Given a Boolean lattice identity I one

It could then prove that the dual identity P' must hold in an arbitrary Boolean
* lattice L by considering the dual lattice L' and noting that I' holds in L just

in case the lattice identity I holds in the dual L'.

Another example where standard notions could be added to the lemma
. library to reduce the length of proofs involves the algebraic characterization

of a lattice. It turns out that the partial order of a lattice is determined by
the meet and join operations and in fact one can define a Boolean lattice
to be a set together with meet, join and complement operations that satisfy
certain equational axioms. This algebraic view of a lattice is described in
textbooks on lattice theory and could be added to Ontic's lemma library.
The algebraic view of a lattice would allow a shorter machine readable proof
of one of the lemmas given in the appendix. More specifically, the algebraic
view of a lattice provides a short proof that if S is a subset of a Boolean lattice
L such that S is closed under the meet, join and complement operations of
L then the set S together with the partial order of L restricted to S forms a
lattice with the same lattice operations as L.

3.2.2 Mathematical Induction

The clearest examples of subhuman behavior on the part of the Ontic system

involve mathematical induction. Many common sense inferences appear to
involve induction. Consider the following examples:

Va
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Consider a colored graph in which adjacent nodes have the same color,
i.e. if there is an arc between nodes n and m then n and rn have the
same color. If nodes n and rn have different colors then there is no path
between them in the graph. A formal proof requires induction on the
length of paths in the graph.

% Consider a chess board. The white pawns start on the second rank and
never move backward. Therefore no white pawn can ever appear un
the first rank. A formal proof of this statement requires induction on

the number of steps in the game.

Consider two containers for holding marbles. Initially each container is
empty. Marbles are then placed in the containers in pairs; one marble

from each pair is placed in each container. No matter how many times
this is done, assuming the containers do not overflow, there will be
the same number of marbles in each container. A formal proof of this

statement requires an induction on the number of marbles placed in
the containers.

* Consider Rubic's cube. Suppose the cube starts in a solved position
and is scrambled by some number of rotations of faces of the cube.
There exists a set of steps that unscrambles the cube. A formal proof
of this statement requires an induction on the number of rotations used
to scramble the cube.

* Consider a mouse running in a maze. Suppose the maze is arranged
inside a box such that there are no openings in the walls of the box

and the mouse can not jump over the walls. No matter how long the
mouse runs, and no matter where it goes inside the maize, the mouse

* will not get outside the box. A formal proof of this statement requires

induction on the number of "moves" the mouse makes in the box.

. '," In each of the above examples the conclusion is obvious to people. In each

. example, if the concepts involved- fere approximated by mathematically pre-
1%** cise notions, then any mathematic an would accept the conclusion as obvious

and would not ask for further proof.

0..
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Ontic can be used to perform induction proofs. However induction proofs
must be done explicitly: one must explicitly formulate the induction hypoth-
esis and explicitly verify the induction step. For example, consider verifyipg
that whiLe pawns in a game of chess can not get to the first rank. This fact
can be verified using the following induction principle for natural numbers.

(DEFTYPE SET-OF-NATNUMS
,I.AMBDA ((S SET))
(IS-EVERY (MEMBER-CF S) NATURAL-NUMBER)))

(L MNA
(FORALL ((S SET-OF-NATNUMS))

(> (AND (IS ZERO (MEMBER-OF S))
(FORALL ((N (MEMBER-OF S)))

(IS (SUCCESSOR N) (MEMBER-OF S))))

(IS-EVERY NATURAL-NUMBER (MEMBER-OF S)))))

The above induction prnciple says that if a set S contains zero and is clo3ed
under successor then it contains all numbers. The set S represents an induc-
tion hypothesis; S is the set of numbers which satisfy the hypothesis.

In the chess example one must prove that white pawns never end up on
the first rank. More formally, let an instance of the type CHESS-GAME be
a particular games of chess, i.e. a particular sequence of moves. If G is a
particular chess game and N is some natural number then

(WHITE-PAWN-ON-BOARD G N)

denotes the type whose instances are the white pawns which are on the chess
board after then N'th move of the game G. We let

(RANK-OF P G N)

be the rank occupied by the pawn P immediate after the N'th move of the
game G. Figure 3.2 contains statements which follow form the rules of chess.
An Ontic proof that pawns never get to the first rank is given in figure 3.3.
The goals in the pzoof are numbered and the NOTE-GOAL steps are labeled

4
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(FORALL ((G CHESS-GAME)
(N NATURAL-NUMBER))

(IS-EVERY (WHITE-PAWN-ON-BOARD G (SUCCESSOR N))
(WHITE-PAWN-ON-BOARD G N)))

(FORALL ((G CHESS-GAME)
(N NATURAL-NUMBER)
(P (WHITE-PAWN-ON-BOARD G (SUCCESSOR N))))

(IS (RANK-OF P G (SUCCESSO. N))
(GREATER-OR-EQUAL-TO (RANK-OF P G N))))

(FORALL ((P (WHITE-PAWN-ON-BOARD G ZERO)))
(IS (RANK-OF P G ZERO)

(EQUAL-TO TWO)))

Figure 3.2: Statements which follow from the rules of chess.
V.

with the numbe. of the goal being noted. The proof uses the facts listed in
t,4hle 3.2 together with simple facts about the ordering of natural numbers.

The proof starts by considering an arbitrary chess game G. The proof
shows that the following induction hypothesis holds for any number N.

(FORALL ((P (WHITE-PAWN-ON-BOARD G N)))
(IS (RANK-OF P G N)

k.GREATER-OR-EQUAL-TO TWO)))

The induction principle for natural numbers states tht if a set of numbers
contains zero and is closed under successor then it contains all numbers. If
the induction hypothesis is 4(N) then one should consider the set of all N

- such that -(N). For the above induction hypothesis one should consider the
following set:

(THE-SET-OF-ALL
(LAMBDA (((N NATURAL-NUMBER))

(FORALL ((P (WHITE-PAWN-ON-BOARD G N)))
(Is (RANK-OF P G N)

(GREATER-OR-EQUAL-TO TWO)))))

"I
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(IN-CONTEXT ((ET-BE G CHESS-GAME)

(LET-BE HYP-SATISFIERS
4:- (THE-SET-OF-ALL

(LAMBDA ((I NATNUM))

(FORALL ((P (WHITE-PAWN-ON-BOARfl G N))

(IS CRANK-OF P GI)
(GREATER-OH-EQUAL-TO TWO)")))

(PUSH-GOAL

(IS-EVERY NATURAL-NUMBER
(MEMBER-OF HYP-SATISFIERS)))) ;#I

C(Il-CONTEXT ((PUSH-GOAL

:7 (IFOI (IX ZERO (MEMBER-OF HYP-SATISFIERS)))) ;#2
(IN-ONTET ME-BEZEROVAR ZERO))

(IN-CONTEXT ((SUPPOSE
(EXISTS-SORE (WHITE-PAWN-Cl-BOARD G ZERO))

(LET-BE P (WHITE-PAWN-ON-BOARD G ZERO))
(LET-BE TWOVAR maO))

(10Th-GOAL) ;#2
(NOTE-GOAL)) ;#2

(IN-CONTEXT ((PUSH-GOAL
(FORALL ((N (MEMBER-OF AYP-SATISFIERLS)))

(IS (SUCCESSOR N) (MEMBER-OF HYP-SATISFIERS)))) ;#3
(LET-BE SATISFIEX, (MEMBER-OF HYP-SATISFIERS))
(LET-BE NEAT-SATISFIER (SUCC SATISFIER))

(IN-CONTEXT ((PUSH-GOAL
(FORALL C((P (WHITE-PAWN-ON-BOARD G NEIT-SATIFIER))

(IS (USEX-OF P 0 IEXT-SATISFIER)
(GREATER-01-EQUAL-TO TWO))))) ; 84

(IN-CONTEXT ((SUPPOSE
(EXISTS-SOME

(WHITE-PAWN-ON-BOARD G NEIT-SATISFIER)))
(LET-BE P (WUITE-PAWI-ON-BOARD G NEIT-SATISFIER))
(LET-BE Ri (RAN-OF P G SATISFIER))
(LET-BE R2 (MANK-OF P G NEIT-SATISFIER))
(LET-BE TWOVAR TWO))

(NonE-GOAL)) ;#4

* (NOTE-GOAL) ;#4
(NOTE-GOAL)) ;#3

4 (IN-CONTEXT ((ET-BE N (MEMBER-OF HYP-SATISFIERS))
(NOTE (IS HYP-SATISFIERS SET-UF-NATNUM)))

(NOTE-GOAL)) ;#1

Figure 3.3: The proof that white pawns never get to the first rank.
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The Ontic proof in figure 3.3 focuses on the set representing the induction
. hypothesis. It then proceeds to prove the base case and induction step. The

- base case uses the fact that the rank of a white pawn at time zero equals
two and every number is greater than or equal to itself. In order to apply
thc fact that every number is greater than equal to itself one must focus on
Lhe number two. The induction step uses the fact that the rank of the pawn
at time n is greater or equal to two and the rank of the pawn at time n + 1
is geater or equal to the rank at time n. To invoke the transitivity of the
ordering on natural numbers one must focus on the three numbers given by
the rank of pawn at times n and n + 1 together with the number two.

The proof shown in figure 3.3 is clearly much longer than a natural lan-
guage argument which simply states that white pawns never get to the first
rank. This example indicates that without additional theorem proving mech-
anisms the Ontic system will exhibit a large expansion factor on many in-
duction proofs.

One possible mechanism for reducing the expansion factor in induction
proofs would be a backward chaining procedure (a tactic) for automatically
generating proofs such as the one shown in the figure 3.3. It would be easy
to automatically convert the induction hypothesis into a set of numbers and

* automatically focus on that set of numbers. Furthermore one could auto-
matically attempt to prove the base and induction cases of the argument.
As figure 3.3 shows however, proving the base and induction cases with the
Ontic system may require focusing on additional objects. In figure 3.3 the
user focuses on an arbitrary white pawn and the number two. In the induc-
tion case the user focuses on the rank of the pawn at two different times. It
seems that it might be difficult to automatically generate these additional
focus objects.

Several automated inference systems include inference mechanisms for
handling mathematical induction [Boyer & Moore 79] [Huet & Hullot 83]

r', [Ketonen 84]. Research is needed to determine if these. or other, induction
Ac mechanisms can be incorporated into the Ontic system. These inference

mechanisms are all backward chaining; the induction hypothesis is taken
S., from the goal statement. It would be interesting to see if some forward
* it chaining induction mechanism could be found that was more in the spirit of

Sb
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Ontic's forward chaining inference techniques.

It might be possible to construct a forward chaining induction mechanism
as part of Ontic's classification process. Recall that classification involves as-
signing a set of types to each focus objec.. Consider a focus object r(n) that
involves an arbitrary number n and consider a type r. It may be possible to
prove that the focus object r(n) is au instance of the type r via induction
on the number n. More specifically, the system could show that r(O) is an
instance of r and that if r(n) is an instance of r then r(n + 1) is an instance
of r. In the chcsss example the focus object r(n) would be (RANK-OF P G N)

, where P is an arbitrary instance of (WHITE-PAWN-ON-BOARD G N). In the
chess example the system would classify the object (RANK-OF P G N) to be
an instance of the type (GREATER-OR-EQUAL-TO TWO). This example shows
that classification could be made more powerful by I.acorpcrating an induc-
tion mechanism.

The desire to have a system which can verify proofs at a human level
of detail, together with examples of powerful human inference involving in-
duction, provides a motivation for finding powerful induction mechanisms.
Hopefuliy ar induction mechanism can be found which allows the above ex-
amples to be machine verified at a human, or near-human, level of detail.

Similarly, it is hoped that other examples of subhuman system performance
will lead to the discovery of more powerful inference mechanisms.

V0.
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7 Chapter 4

Quantifier Free Inference

Each context in the Ontic system is specified by a lemma library, a set of focus
objects, and a set of assumptions. Given a lemma librairy, an assumption
set, and a focus set theOntic system uses focused forward chaining inference
mechanisms to generate a set of "obvious truths" for the given context. In
any given context the operations NOTE and NOTE-GOAL can be used to make

. permanent additions to the lemma library.

Each lemma, focus object and assumption is an expression in the for-
mal language Ontic. Rather than manipulate Ontic expressions directly, the
Ontic system compiles these expressions into graph structure where there is
a one to one correspondence between graph nodes and Ontic expressions.
Compilation and inference are separate processes; compilation generates a
graph structure and inference manipulates graph labelings without creating
additional graph structure. For efficiency reasons the graph constructed by

_* the Ontic system is saved and used repeatedly in many different contexts.

In the Ontic system the current context is specified by incrementally
adding and removing .-t-ppositions and focus objects. The system maintains
a stack discipline with respect to the addition and removal of focus objects:
the last supposition or focus object added inlst be the first one removed. The

* graph labeling of a given context is determined by the lem-ama library, focus
objects and suppositions; the graph labeling does not depend on how the

t 91
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context was constructed. Labelings can be computed incremen]tally iowever.

When a focus object or supposition is added Ontic's inference mechanisms
extend the labeling to include more truth labels and to satisfy more equiv-
alences. The system also maintains an "undo list" so that when a focus
object or supposition is removed the previous context can be restored and
then updated to reflect additions to the lemma library.

Chapters 6 and 7 specify the formal language Ontic and the way in which
the graph structure is generated from the lemma library. This chapter. and
the one that follows, specify the formal structure of the graph and the mecha-
nisms for labeling that graph. The graphs constructed by the Ontic compiler
have five different kinds of nodes and nine different kinds of "links" between

4: rodes. However, this chapter discusses only those kinds of nodes and links
A that are used in Boolean constraint propagation and congruence closure.

These node types and link types are introduced in three stages by defining
three progressively more sophisticated types of graphs.

The first two sections of this chapter discuss graph structure and in-
ference mechanisms that are relevant to Boolean constraint propagation.

V Boolean constraint propagation is responsible for enforcing certain Boolean
constraints on formula nodes and for enforcing certain relationships between
truth labels of equation nodes and color labels representing equivalences.
Congruence closure ensures that the color labels that represent equivalences
respect the substitution of equals for equals.

.%.

4.1 Boolean Constraint Graphs

* This section describes Boolean constraint graphs and tht inference mecha-
nisms that apply to them. Sections 4.1.2 and 4.1.3 can be safely ignored by
readers who are not interested in correctness proofs; the graph structure and
inference mechanisms are fully specified by the end of section 4.1.1.

J'. Boolean constraint graphs are a very simple approximation of the graphs

produced by the Ontic compiler; Boolean constraint graphs have only a single
kind of node and a single kind of link. The nodes represent formulas and

r* C r - . r - - - --- -
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each link is a disjunctive constraint on truth values assigned to the nodes.

Definition: Let K be a set of fuimula nodes. A literal T over
A' is either a node n in K or the negation -n of some node n in

A clause over A' is a disjunclon of the form

where each q'i is a literal over K.

A Boolean constraint graph 13 consists uf a set of formula nodes
i and a set of clauses over those nodes.

The Boolean constraint propagation algorithm manipulates partial truth
labelings of Boolean constraint graphs. More specifically, the propagation
algorithm extends partial truth labelings in a manner justified by the clauses
in the graph.

Definition: A partial truth labeling -y of Boolean constraint graph
S is a partial map from the nodes in B to the set {true, false};
if n is a node in B then -y(n) is either true, false or undefined.

A partial truth labeling y on B determines a partial truth labeling
on all literals %Y over B as follows:

false ify(n) = true
7(-'n)= true if '(n) = false

undefined if 7(n) is undefined

Each clause is a disjunction of the form

'PI V T2 V ... ',n

% 1

X A.. Y - **- ~ -~ . . .%*S. . * %~.%td%



91 CHAPTER .4. QUANTIFIER FREE IVFEPFCE

which states that one if the literals must be true. The propagation algorithm
is based on the notion of a unit clause; Boolean constraint propagation ex-
tends partial truth labels by identifying unit clauses in the graph structure.
The notion of a unit clause is defined relative to the partial truth labeling -:.
Consider a clause of the form

V V ... ,

and a partial truth label y. If y,(k') is false then the above clause expresses
the constraint that one of the other literals must be true. In general one
should only pay attention to the non-false literals in a clause. A clause with

". only a single non-false :iteral is called a unit clause.

Definition: A clause l V 4'2 V ... C,, is called a -,-unit-clause if
there is exactly one literal 'i such that .-(%i) is not false. The
single non-false literal is called the unit literal of the clause.

An open y-unit-clause is a y-unit-clause where the unit literal has
no truth label under - , i.e. y(%k) is undefined for the unit literal
Ili.

An open -- unit-clause provides grounds for extending the partial truth
labeling "y; if there is only one non-false literal in a clause C then the remain-
ing literal, the unit literal of the clause, must be true. Boolean constraint
propagation uses open unit clauses to extend the truth labeling until either
an inconsistency is discovered or there are no remaining open unit clauses.

Definition: Let B be a Boolean constraint graph and let -y be a
partial truth labeling on B.

The partial labeling y will be called -inconsistent if there is some

S. clause

in B such that y(%i) is false for each lite Pi in the clause. If
4..'

" 5 -yis not B-inconsistent we say that -y is B-consistent.

5,
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Let kk be any literal over the nodes in B such that yf(%) is un-
defined. The labeling -,[T := true] is the partial truth labeling

which agrees with - on all nodes other than that appearing in)
q, and such that -,[k: true](') eo,,als true. -,[q: false] is

defined similarly.

Boolean ozstr~int propagaii: starts with an arbitrary partial labeling
-. of a Boolean constraint graph B and returns - new partial labeling .
The Boolean constraint propagation procedure can be defined as follows:

Definition: A partial truth labeiing -y of a. Boolean constraint
graph 8 is called normalized if either it is 8-inconsistent or there
are no open unit clauses in 8 under -y.

.1

Procedure for Computing .o(-f):

If -y is normalized then return -j. otherwise choose an open -y-unit-
clause in B with unit literal T and return the labeling N'(-y[q,
true,)

Since there are only finitely many formula nodes in C the partial truth
labeling can not be extended indefinitely and the recursion in the above
procedure must terminate. Furthermore the labeling returned by the above

procedure is always normalized.

The normalization of a labeling of a Boolean constraint graph involves
inference. If a labeling -y' can be derived via a single inference from a labeling
*,then we write -f-8 -7. In analyzing Ontic's inference mechanisms the one

step inference relation -*t is easier to think about than the normalization
function N_. More formally. for any Boolean constraint graph 5 the relation
--- is defined on the labelings of B as follows:

fI Definition: Let -y and -7' be two partial truth labelings of a
Boolean constraint graph 5. W\e write -y -+5 -y' if -y is 5-consistent

I

I
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and ,' can be derived in a single unit inference from y, i.e. if there
is some open -y-unit-clause in S with unit literal T and such that
7 equals ";[ true].

The relation -L should be viewed as a reduction relation analognus to re-
duction relations in the lambda calculus or term rewriting systems. For any

* labeling of F7' the normalized labeling NB (3') is the normalization of y under
the reduction relation --+ -

4.1.1 Compiling Boolean Combinations

The graph structure used in semantic modulation is constructed by compiling
expressions in the Orntic language; the compilation process translates the
Ontic expressions into graph structure. The utility of Boolean constraint
propagation is best understood in light of this compilation process. The
full Ontic compiler is precisely defined in chapter 7. However this sectionI describes the compilation of Boolean combinations of formulas.

The compilation process converts an Ontic formula F to a formula node
no. Certain Ontic formulas are associated with clauses called meaning pos-
tulates. When the node n is constructed the meaning postulates for 4)
are added "o the graph. For example suppose that the formula 4' is a
Boolean combination of the formulas OI and 02, e.g. 4' might be the formula

. (OR 0) 02). The meaning postulates for 4D are clauses that relate the node
no to the nodes no, and no. The exact nature of th'e clauses relating no
to no, and no2 depends on the Boolean connective used in 4). Table 4.1

4 shows the meaning postulates foi the Boolean connectives used in the Ontic
system.

Boolean constraint propagation generates a normalized partial truth la-
beling of the constraint graph generated by the compilation procss. If the

* normalized labeling is B-consistent then the mt ining postulates for Boolean
connectives ensure certain relationships betweei, Boolean formulas and their

- s',bformulas. For example consider the following meaning postulate for im-

4-

A '-
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-- Formula (D Meaning Postulates for nD

(AND 01 02) -n(AID e, e2) V no, i.e. WD G 02) no

.n(Auu el 02) V n02 i.e. rti(D , 02) 4= n01

-ne, V -no, V n,(AD 0, e2) i.e. ne, A he2 = n(An 01 e)

* (OR 01 02) -no, V n(oR 9, 62) i.e. nl, = n(O 01 02)
% -Ing, V n(o0 e, e2) i.e. ne, = n(OR e, 62)

'
7 (co 61 e2) V ne, V ne2 i.e. n(oa g1 62) => no V no

(IMPLIES 01 02) -- ne. V nCIIPLIES 8 %g) i.e. no1 , n (IMPLIES el 02)

no, V n( pLIEs @, e2) i.e. -', -2 n(IRPLIES E), 82)

-,n (IMPLIES 0
i g0 V -inek V n02 i.e. n(3J'LIES 01 e2) A no, = no,

(IFF 01 -n(I 9 e2) V -'no, V ne2 i.e. n(Ir el e2) A nA , 1 no,
-,n(iv e, 02) V no, V -n'e, i.e. n(y e, 62) A -no, > -tle

-no 1 V ne2 V n(Iyr 61 @2) i.e. ne, A n82 = n(,Fp ( , e2)

ne, V n V n(IFy , 82) i.e. -nne, A -'7e2 * n(IFF e, 02)

(NOT 0) ne V nmo, e)
-'no V -'n(Jt 6.

0
%£' Table 4.1: Meaning postulates for Boolean connectives

-"-S
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plications of the form (IMPLIES 01 02)

:'" (I PL:ES @1 e2) V -re1  V no 2

Now suppose - is a B-consistent normalized partial truth labeling such that

",(n(MnpLIss 91 e2 )) is true and t'(n01 ) is true. In this case the first two
literals in the above clause are labeled false under -/. By assumption -' is

S-consistent so the last literal is not false. Furthermore since -y is assumed
to be normalized the above clause can not be an open y-unit-clause so the
last literal must be labeled true. In summary:

If y is a 8-consistent normalized labeling such that

Y(n(nPLxts o1 @2)) = true

and

y(ne,) = true

then
-f(ne.) = true

Thus 6-consistent normalized labelings are closed uDder the inference rule
of modus ponens. A similar argument can be used to prove the following:

If y is a B-consistent normalized labeling such that

" '7 PL(nc IEL1s o 2)) = true

and
j ,,7 (n 02  ) = false
q I 

then

7(n oe ) = false

' A similar argument concerning the meaning postulates for negations shows

that if y is a B-consistent nu, rmalized partial truth labeling and the nodes

I

4,
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no and nu(r o) have been constructed in the graph then either -Y does not
provide a truth label for either of these nodes or the y assigns these nodes
opposite labels.

Now let op be any binary Boolean operator listed in table 4.1 and let f be a

6-consistent normalized truth labeling. Tei meaning postulates ensure the
following conditions:

* If the nodes no, and no2 both have truth labels then any node of the
N. form n(op 9, a), also has a truth label; n 0op el 9,) has the truth label

given by the meaning of op.

* If the meaning of op allows the truth of (op 0 1 0 2) to be derived

4 from either the truth label for no, or the truth label for (or nE2 ) then

n(op e1 0,) has the appropriate truth label. For example a disjunction
is true whenever one of its disjuncts is true and a conjunction is false

--. whenever one of its conjuncts is false.

If the meaning of op allows the truth of no, to be derived from the
truth label of n(.p 0, 0,) then no, has the appropriate truth label. For

example if a conjunction is true then each conjunct is true and if a
disjunction is false then each disjunct is false. If an implication is false
then its antecedent is true and its consequent is false.

o If the meaning of op allows the truth of no, to be derived from both
the truth label of n(.p 0,) and the truth label of no, then no, has
the appropriate truth label. An analogous statement holds for deriving

--'. labelings of ne, from labelings of n(,p e, 0,) and no,. For example if
a conjunction is labeled false and one of its conjuncts is labeled true
then other will be labeled false. If a disjunction is labeled true and
one of its disjuncts are labeled false then the other disjtcnt '. 4l Le
labeled true.

4 The above properties of a B-consistent normalized labeling -y do not guar-
antee that y is closed under all possible Boolean inferences, Boolean con-
straint propagation constructs a normalized labeling in time proportional to

V./

N
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the number of nodes in the graph; assuming P # NP any logically com-
plete Boolean inference mechanism requires exponential time. Thus it is not
surprising that Boolean constraint propagation is logically incomplete. More
specifically, Boolean constraint propagation does not perform case analyses.
For example there exists a S-consistent normalized labeling y( with the fol-
lowing properties:

,7(n¢(a o, o,)) = true

-Y(f7((IPLIES e, 0,))= true

(nd(IxMPLIES 9- 8,)) = true

fy(ne 3 ) is undefined

In the above situation Boolean constraint propagation does not generate
truth labels for any of the nodes no,, ne, or noe.

4.1.2 Order Independence for Boolean Inference

The Boolean constraint propagation procedure defined above is non-deterministic;
the procedure extends a partial truth labeling by non-deterninistically choos-
ing an open unit clause. Fortunately however, one can prove that the labeling
generated by the propagation procedure is independent of the order in which
open unit clauses are chosen.

Definition: Two partial labelings -ti and 72 of a Boolean con-
straint graph B will be called B-equivalent if either -fl equals 72
or both Y and 7I2 are B-inconsistent.

Normalization Theorem: For any partial labeling -y of a Boolean
constraint graph B the Boolean constraint propagation procedure

terminates and all possible values of N8o() are B-equivalent.

This theorem can be proven by examining the inference relation --+.
Viewing -+3 as a reduction relation, the above theorem is implied by the
fact that the relation -- ,jt satisfies a certain Church-Rosser property. The
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* 4 Church-Rosser property of -4- is proven using general lemmas that apply
4. to any reduction relation.

Definition: For any binary relation -* we write x --' y if either
x equals y or there exists some z such that x --+ z and z ---* y.

7"- We say that -- is well founded if there is no infinite sequence

X 4 - X --+ .

We say that y is a normal form under -- if there is no z such

that y -+ z. We say that y is a normal form of x under -- if y is
a normal form under - and x --+* y.

-J.*

We say say that --+ is a terminating normalizer modulo an equiv-

alence relation ;z if -- is well founded and normalizations under
are unique up to ,, , i.e. if y and z are both normal forms of x

then y ; z.

" ---s Normalization Lemma: -+a is a terminating normalizer

.,- modulo B-equivalence.

2- ,, To prove the normalization lerama first note that whenever ---t y' the
labeling y' provides more truth labels than does -. Since there are only
finitely many nodes in B there can not be any infinitely long reduction chains
under the relation -+4. Thus --+ is well founded. Thus, to prove that --+s
is a terminating normalizer it suffices to show that normal forms are unique
up to B-equivalence.

Definition: We say that -+ satisfies the diamond property mod-
ulo an equivalence relation ; if for every x, y and z such that
x -* y and x --+ z there exists a w and w' such that y - w,
z-* w' and w g w'.

--N
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Diamond Lemma: If - is well founded and satisfies the iia-
mond property modulo then for any object x in the domain
of the relation -- , all normal forms of x under --* are equivalent
under ;, i.e. -* is a terminating normalizer nodulo z .

The diamond lemma as stated above is a straightiorward modification of
a theorem proved by Knuth and Bendix for term rewrite systems [Knuth &
Bendix 69]. The diamond property for a given relation can be proven by
showing that individual inferences commute. More specifically if there are

two open unit clauses which each can be used to extend the partial truth
labeling in two different ways then one can perform both inferences and the
result is the same no matter which inference is performed first. Unfortunately
the situation is complicated by the possibility of contradictions but the basic
result holds: -+ satisfies the diamond property modulo B-equivalence of
partial truth labelings.

Lemma: -- s satisfies the diamond property modulo B-equivalence.

Proof: Suppose yo-"oT 71 and 7o-O 72 where Yt is a different
labeling from -y2. From the definition of --+t there must exist
distinct literals ' 1, and 'P 2 such that

- 70 ['P1 := true]

and

72 = 7o[2 := true]

Let c, be the clause in B which is an open 70-unit-clause with
unit literal %Y, and let c2 be the clause in B which is an open
70-unit-clause with unit literal T2.

First suppose that %P1 and T2 are opposite literals for the same
formula node. In this case the assignment 'P1 :=true will cause
412 to be false. Thus every literal in c2 will be false under 711 so
in this case 71 is B-inconsistent. Similarly every literal in ci will
be false under 72 and so in this case -y2 is B-inconsistent. But if

Vh
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2: -ti and 72 are both B-inconsistent then they are B-equivalent so
the diamond property holds.

Now suppose that the literals It1 and %V2 involve different for-
mula nodes. Let IN be the labeling

(-y[Ql := true)[' 2 := true]

Since T, and tP2 involve different formula nodes -y3 can also be
written as

2:= true])[Ql := true]

Since Q, and 'P2 involve different formula nodes the clause c2 is
still an open y1-unit-clause. Thus if 7i is B-consistent 71-*B 73.

Similarly if 72 is B-consistent then 7--* 7. Thus if both y' and
72 are B-consistent then they both reduce to -y3 so the diamond
property holds. If both 71 and 72 are B-inconsistent then they are
B-equivalent so the diamond property holds. Now suppose that
71 is B-consistent but 72 is not. In this case 71 reduces to 7f3. But
73 is a proper extension of 72 and 72 is B-inconsistent so -ya must
also be B-inconsistent. But this implies that 73 is B-equivalent

S-. to 72 so the diamond property holds.

- Since -+ is well founded and satisfies the diamond property modulo
B-equivalence for partial truth labelings the Knuth-Bendix diamond lemma
implies that normalizations are unique up to B-equivalence and thus --+1
is a terminating normalization relation modulo 8-equivalence. Thus, up to
B-equivalence, there is only one possible value of N;(-).

* 4.1.3 Semantic Soundness

For any Boolean constraint graph B the relation --+ can be viewed as an
inference relation. It is possible to provide a simple semantics for Boolean
constraint graphs and prove that the relation "--b. is sound modulo this

* semantics. For the most part the soundness of -"*8 is self evident. However
the semantics given here provides groundwork that will be needed to prove
the soundness of semantic modulation inference relations.

% W
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'V: Any semantic interpretation of a set of formula nodes provides a way of
ar 3igning every node a truth value, either true or false. Thus any semantic
interpretation of a set of formula nodes yields a complete truth labeling of

.'f3 those nodes.

N Definition: A partial truth labeling of a Boolean constraint
graph B3 is called complete if it assigns every node a truth la-
bel. Complete labelings will be called Boolean interpretations
and will be denoted with the greek letter w.

Clauses in a Boolean constraint graph and any partial truth labelings express
constraints on possible interpretations.

* Definition: Let B be a Boolean constraint graph, let y be a
A.: partial truth assignment on the nodes in 8, and let w be a Boolean
- - interpretation of the nodes in B.

We say that w satisfies a clause

i V t V ... Ik

if w makes at least one of the literals Ti true. We say that w
satisfies the Boolean constraint graph B just in case w satisfies
every clause in B.

We say that w satisfies the partial truth labeling -y if every node
that is assigned a truth label by -7 is assigned the same truth label

4w, by w.

The reduction relation ---+1 can be view:ed as a sound inference relation
in the sense that if 7---+l5 72 then every constraint in 72 is implied by the
constraints in 7i and B, i.e. if w satisfies 7il and 8 then w also satisfies 12-

-- y Soundness Lemma: If w is a Boolean interpretation that
satisfies a Boolean constraint graph B and a partial truth labeling
-y, and if -y--+$ -', then w satisfies y'.

3%%
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4.2 Equality Cortraint Graphs

This section describes equality constraint graphs and the inference mecha-
nisms that apply to them. Sections 4.2.1 and 4.2.2 can be safely ignored by

-- readers who are not interested in cor'rectness proofs.

As the name implies, eauality constraint graphs are used to reason about
equality. In addition to clause links equality graphs have equality links. An
equality expresses the fact that a certain formula node represents an equation
between two other nodes. Equality constraint graphs have both formula and
non-formula nodes. The nan-formula nrodes in an equality constraint graph
are divided into two types: quotation nodes and non-formula non-quotation

4 nodes. No two quotation nodes should ever be equal. If there are n quotation
*0- nodes then there are order n 2 potential equalities between these nodes; the

existence of quotation nodes eliminates the need to explicitly state that these
n 2 equalities are all false. In the Ontic cumpilation process quotation nodes
are used to represent quotation expressions of the fc.m (QT;OTE symb).

Definition: An equality constraint graph E consists of a set of
formula nodes, a set of clause links over the formula nodes, a set

, of quotation nodes, a set of non-formula non-quotation vodes,
and a set )f equality links of the form

p * n = m

where p is a formula node in C and n and m axe any nodes in C.

Let 3 be tae Boolean constraint graph consisting of the formula
nodes and clause links in an equality constraint graph E. We say
that B is the Boo!ean constraint graph underlying E.

An equality link of the form p * n = m says that the formula node p

represents the equality between nodes n and mn. The Ontic compiler creates
an equality link every time it compiles an equality formula. More specifically,
every time a node of the form n( . o) is created the system constructs the

sN~~~~~) jVN~~~~ % N'~v'r.v t "YtJ' I$ '-~ trVl
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equality link
fl(- a b) * la = nb

where na is the node representing the expression a and nb is the node repre-
senting the expression b.

The labelings of equality graphs contains both a pa. al truth labeling of
formula nodes and a color labeling of all nodes. The color labeling represents
information about the equality of nodes: two nodes with the same color are
considered equal.

Definition: A labeling C of a colorable node set E is a pair
<-y, tc> where -y is a partial truth labeling of the formula nodes
in E and r. is a color labeling which maps every node in S to a
color.

The notion of a labeling as defined above is meaningful independent of
the links in the graph structure E. A labeling contains information about
which formula nodes are true (or false) and information about equivalences
between nodes (both equivalences between formula nodes and equivalences
between non-formula nodes). However the links in an equality constraint
graph C can be thought of as constraints on labelings. More specifically, we
have the following definition of a C-inconsistent labeling.

Definition: We say that a labeling <-y, r.> of C is C-inconsistent
if any a; the following conditions hold:

* -y is 5-inconsistent where B is the Boolean constraint graph
underlying E.

* There is some equality link p t* n = m in E such that
n(n) = tc(m) but -y(p) = false.

* There are two distinct quotation nodes n and in in C such
that x(n) =x(m).

L 6 _
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- There are two formula nodes p and q such that x(p) = x(q),
both -y(p) and -y(q) are defined but 'y(p) is the opposite of

:-y(q).

If a labeling £ is not (-inconsistent then we say that the labeling
< K, K> is $-cnsistent.

-

A given equality constraint graph E is associated with an inference rela-
tion - on labelings. The inference relation -* can extend a labeling in
one of two ways: it can add a new truth label on a formula node or it can
merge two equivalence classes by assigning both classes the same color label.
When two equivalence classes are merged the smaller class is recolored to be
the color of the larger class. This class merger operation can be defined as
follows:

'p4

_ Definition: If x is a color labeling of the nodes in E, and n
and m are nodes in E then the color map n[union(n, m)] is a
color map which yields the same equivalence relation as K except
that the equivalence classes of n and m have been merged. More
specifically, if the size of the equivalence class of n under Ke is less
than or equal to the size of the class of m under ri then the map

[union(n, in)] is defined as follows:

:T -'" { (m) if x(q) = xo(n)

_[union(n,m)](q) 5 )i(q) othewis
ic(q) otherwise

The above definition specifies that the union operation recolors
Vthe class of n to be the same color as the class of m. If the size

of the class of n under x is larger than the size of the class of
m under x then [union(n, in)] equals r.[union(m, n)]. The union
operation always recolors the smaller equivalence class.

It is now possible to define the inference relation -- c

-N'N
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d Definition: Let £ be a labeling of C which is equal to the pair
DfK>. Let C be a labeling of 6 which is equal to the pair
<-Y', x>. We write a-+ eC' if one of the following conditions
hold:

9 Pc = K'and' ,is derived from '7 via unit inference. i.e.- '
where 8 is the Boolean constraint graph underlying C.

, S contains the link p ,* n = n and each of the following
conditions hold

' -(P) true
V. -- ,(n) € (nz)

S- Y' = Y and x:' = ic[union(n,m)]

E C contains the link p 4* n = m and each of the following
conditions hold

C (n)_ =r(m)

- (p) is undefined

=' Ki and -y' = -y[P := true

. C contains two formula nodes p and q such that the following

- . conditions hold:

- (p) (q)

- -t(p) is defined but y(q) is not.

- = n and ''= 7[q := y(p)]

4.2.1 Semantic Soundness

Any semantic interpretation of an equality constraint graph provides both a
truth labeling and a color labeling where two nodes have the same color just

*. in case they denote the same semantic object. A labeling that corresponds
to a semantic interpretation must be complete in that every formula node
must have a truth label.

4,.

-4,
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Definition: A labeling L of an equality constraint graph £ is
called complete if £ assigns every formula node in S a truth label,
either the label true or the label false. Complete labels are also
called possible worlds.

The term possible world" comes from modal logic: there is a strung similarity

, between the semantics of the graphs described in chapter 5 and the possible

world semantics of modal logic. Clause links and equality links can both
be viewed as constraints on possible worlds. A partial labeling can also be
viewed as a constraint on possible worlds.

Definition: A possible world w satisfies an equality constraint
graph . just in case the truth labeling of w satisfies every clause
link in C, no two quotation nodes of E are assigned the same color

by w, any two formula nodes which are assigned the same color
label by w are assigned the same truth label by w, and for every
equality link p -#, n = m in E, the world w assigns p the label
true just in case w assigns n and rn the same color label.

4%

A possible world w satisfies a labeling C of an equality constraint
graph E just in case every formula node which is assigned a truth
value by £ is assigned the same truth value by w and if two
nodes n and m are assigned the same color by C then n and m
are assigned the same color by w.

P'.
'

PS The reduction relation - , can be viewed as a sound inference relation
in the sense that if C, -1-+ £2 then every constraint in £2 is implicitly present
in S and C-, i.e. if an interpretation satisfies e and £1 then it also satisfies
, £2.

e --s Soundness Lemma: If w is a possible world that satisfies

4, the equality constraint graph e and the labeling C, and if C--+e C',
-" then w satisfies C'.

4.o
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,

4.2.2 Termination and Order Independence

Note that if C--+s L' then either C' provides more truth labels than C or C'
has fewer colors (equivalences classes) than C. Since there are only finitely
many formula nodes that can take truth labels, and since the number of
equivalence classes can not be reduced below one, the inference process must
terminate, i.e. there are no infinite inference chains of the form

Cl--*c )C2-+C C3---'F

Thus the relation -, is well founded.

To prove that "*e yields a well defined normalization operation one must
show that all normal forms of a labeling £ are equivalent modulo some equiv-
alence relation. This equivalence of normal forms can be established under
the following equivalence relation.

Definition: Two labelings C and C' of a colorable node set E
p. are called S-equivalent if either both C and C' are E-inconsistent

or if they both provide the same partial truth labeling on the
formula nodes in S and the color labelings in C and C' determine
the same equivalence relation on E.

--#, Normalization Lemma: --*r is a terminating normalizer
relative to C-equivalence.

The proof of the above theorem uses the Knuth-Bendix diamond lemma.
The proof that -+F satisfies the diamond property relative to C-equivalence
iL similar to the proof that --+ satisfies the diamond property relative to
6-equivalence; both proofs are based on the commutativity of individual

U. inference reductions.

4.2.3 Running Time

The union operbtion used to construct c[union(n, m)] recolors the the smaller
of the two equivalence classes. This has the important consequence that every

S
I,
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time the color label of a node n changes the size of n's equivalence class at
least doubles. Let ISI be the number of nodes in E. The color label for a given
node n can change at most [log 2 IJ times because if the color of n changed
more than [log2 ISIJ times the equivalence class of n would be larger than
_I. Since the color of a given node n can change at most [log2 ISI times the
total number of coloring operations required to normalize a labeling C is at
most ISj[log2 lI j. Since the number cf truth labeling operations is at most
-1I the total number of labelings operations is order ISl log Ig.

4.3 Congruence Constraint Graphs

This section describes congruence constraint graphs and the inference mech-
Ianisms that apply to them. Sections 4.3.1 and 4.3.2 can be safely ignored by

* '. readers who are not interested in correctness proofs.

Congruence constraint graphs are just like equality graphs except that
* they contain subexpression links. Subexpression links relate a node for a

composite expression to nodes for its subexpressions. For example a subex-
be" pression link might relate the node representing the expression (FO0 A) to

the nodes represei-ting .'00 and A. The labeling process which uses subex-
pression links is called congruence closure. Congruence closure effectively
performs the substitution of equals for equals. For example consider a color
labeling such that the node for A and the node for B are assigned the same

a, color and yet the nodes for (FOO A) and (FOO B) have different colors. This
labeling would not respect the substitution of equals for equals. A color Ia-
beling is said to be congruence closed if it does respect the substitution of
equals for equals.

I
WI

* I Definition: A congruence constraint graph C is of an equality
constraint graph augmented with a set of subexpression links of
the form

. (m m 2 ... mrk) = n

where n and each ni are nodes in C.

i4
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Let E be the equality constraint graph derived from a congrue.ce
constraint graph C by deleting all subexpression links. We say
that £ is the equality constraint graph underlying C.

A labeling of a congruence constraint graph is a labeling of the
underlying equality constraint graph.

A subexpression link of the form (n 1 rn2 ... ink) = n says that the node
n represents the application of the operator mi to the arguments m2
rnk. The Ontic compiler generates subexpression finks whenever it compiles
an applicative expression. Subexpression links can be used to define a new
inference relation on labelings.

• , 4.:

Definition: A labeling C of a congruence constraint graph C is
called C-consistent just in case £ is (-consistent where £ is the
equality constraint graph underlying C.

For any two labelings C and C' of a congruence constraint graph
C we writeC-c C' just in case C is equality consistent and either:

* C---, C' where E is the equality constraint graph underlying
C.

a CV can be derived from C via a congruence inference, i.e. C
is a pair <f, K> such that there are two subexpression links

- (n, n 2 ... nk) = m and (pi p2 ... pk) = q in S such that for
each pair mi and qi of corresponding subnodes ic(mi) = ic(qi)

but K(n) $ c(p) and L' is the pair <f, r[union(n,p)]>.

If a labeling £ is normalized relative to -*c then there is no pair of
subexpression links satisfying the conditions for congruence inference given
in the definition of -- c . This implies that if £ is normalized under --c then
L is congruence closed.

p4a"
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4.3.1 Semantic Soundness

Recall that a possible world is a complete labeling, i.e. a color and truth
labeling which assigns every formula node a truth label. The links in a

- congruence constraint graph can be viewed as constraints on possible worlds.

A>
Definition: A possible world w satisfies a congruence constraint

graph C just in case w satisfies the underlying equality constraint
graph and for any two subexpression links

(nt M-2 ... ink) = n

and

(p, P2 ... pk) = q

if for each rTi the world w assigns mi and pi the same color then
*,. w assigns nt and q the same color.

inThe reduction relation --+c can be viewed as a sound inference relation
in the sense that if fl--C £2 then the constraints in C and C semantically
imply the constraints in C'.

-- Soundness Lemma: If w is a possible world that satisfies
both a congruence constraint graph C and a labeling C of C, and
if C--+c V', then w satisfies '.

4.3.2 Termination and Order Independence

If £-+c ' then either C' provides more truth labels than £ or C' provides
fewer color labels, and thus allows fewer equivalence classes than C. Since

0" there can not be more truth labels than there are formula nodes, nor fewer
V, equivalence classes than one, every reduction chain must terminate. Thus

the relation --*c is well founded.

.%
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To prove that -- c yields a well defined normalization operation one must
show that all normal forms of a labeling £ are equivalent modulo some given

'I equivalence relation.

" --- c Normalization Lemma: -c is a terminating normalizer
modulo S-equivalence where E is the equality constraint graph
underlying C.

The above theorem is proved via the Knuth-Bendix diamond lemma and the
proof that --*e satisfies the diamond property is based un the commutativity
of individual inferences.

4.3.3 Implementation Techniques

For any labeling C of a congruence constraint graph C we can define Nc (C) to
be any normal form of £ under the reduction relation --+c . The definition of
--*c specifies the value of Nc(-) up to C-equivalence where E is the equality
constraint graph underlying C. Furthermore, because the size of a node's
equivalence class at least doubles every time the node is assigned a new
color, the normalization procedure involves at most order ICI log ICl labeling
operations. The above specification however does not provide a complete
description of an efficient implementation of the normalization function Nc.
More specifically no procedure has been given for finding the clauses, equality
links, and subexpression links involved in a single step of the normalization
process.

Most labeling inferences involve a single link in the graph structure; the
a? inference is justified by a single link and the label of the nodes in that link.
-: Boolean constraint propagation based on clause links, for example, always

involves a single clause. There are certain inferences, however, that involve
two objects that are not connected by any single link. For example, to test
for consistency the system must determine if two quotation nodes have the

ab same color label. To quickly test for the presence of two quotation nodes
% with the same color label one can maintain a hash table with entries of the

'a

5'
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14 form c n where c is a color and n is a quotation node. Every time a
quotation node n is assigned a color c one checks the hash table to see if

N some other quotation node has been labeled with color c. If there is such
a node, an inconsistency is flagged. If there is no such node then one adds
a new entry to the hash table. This hash table can be maintained during
the inference process. Assuming hash lookup takes constant time, the time
needed to maintain this hash table is proportional to the number of color
labeling operations.

Another example of an inference that involves two objects not related
* ~.by a single link is congruence inference. Congruence inference, as defined in

the previous section, requires finding two subexpression links which together
justify a congruence inference. Let s be the number of subexpression links.

-, Searching all pairs of subexpression links for a possible congruence inference
* might require order s2 comparisons. Fortunately an additional data structure

can be used to eliminate the need for s2 comparisons.

-'" Each labeling of a congruence constraint graph can be augmented with
a hash table that maps tuples of colors to nodes. More specifically each
labeling is associated with a set of hash table entries of the form

<Cl C2 ... Cn>-4 n

where each q is a color and n is a node. Such a table entry corresponds to
a subexpression link of the form

(M2 Mk.ni) = nt

I.where each node mi has color eq. Using this hash table it is possible to quickly
determine if there are two subexpressions links satisfying the conditions for
congruence inference. Such a hash table can be incrementally maintained as
a labeling is normalized.

Given the hash tables described above it is possible to determine if a
labeling can be further reduced by independently examining individual links.
If a given link e can not be used to generate an inference then f need not be

0 checked again until some label changes for some node in £. The total number
10 of labeling operations performed on any given node is order log(n) where n
_: is the number of nodes in the graph. If there is some upper bound on the

S
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number of nodes that appear in any given link then the number of times a
given link needs to be checked is also order log(n). Thus, if e is the number

Nof links in the graph, and n is the number of nodes, the total number of link

checks is order e log(n) and the total number of labeling operations is order

-" Seh~ian log(n). rnEfficient]congruence closure algorithms are described in [Downey,

2l.
Sehi z ara 8]
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Chapter 5

Inference with Quantifiers

Focused binding and automatlic universal generalization are graph labeling
infr -ence processes that construct binding environments and quantified for-
mulas. Certain nodes in the graph structure are identified as variable nodes.
Graph labelings are used tc., represent variable b~indings. For example if n is
a variable node and r is some other node then the binding n -4 r can be
represented in a graph labeling by merging the equivalence classes of n and r.
This graph theoretic binding mechanism forms the basis for an inheritance
mechanism; a binding of the form n *- r causes information known to be
true of the variable (or generic individual) n to be inherited by the particular
instance r.

Ontic's inference mechanismsm are fully described in sections 5.1, 5.4, 5.5
and 5.6; sections 5.2 and 5.3 can be safely ignored by readers who are not
interested in correctness proofs.

5.1 Semantic Modulation Graphs

Semantic mnodulation graphs have two new kinds of nodes: variable nodes
which represent variables and type nodes which represent types. Semantic
modulation graphs also have two new kinds of links: type declaration links

1i7
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that associate a variable with a type and type assertion links each of which

states that a certain formula node represents the statement that a certain
" object (node) is an instance of a certain type.

This section describes the inference relation --+s .The inference relation
p -*.s both performs inference and generates variable bindings. However, the

relation -+s is not guided by focus objects. Section 5.4 describes the relation
- sx, which is similar to --+s except that the generation of variable bindings
is guided by a set F of focus objects.

Before defining semantic modulation graphs we define the preliminary
notion of a variable graph. A semantic modulation graph is a variable graph
that satisfies a certain non-circularity constraint.

Z__- Definition: A variable graph consists of a congruence constraint
- graph together with the following:

* a classification of the non-formula non-quotation nodes into
variable nodes, type nodes, and unclassified nodes.

*'." * A set of free variable links of the form

Where n is a variable node. Such a link says that n rep-
p* 'C2, resents a variable that appears free in the expression repre-

seated by r.

• * A set of type declaration links; for each variable node n there
is exactly one type declaration link of the form

Tn:m

The node m is called the type node of n and n is called a
variable of type m.

i
ItN
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* A set of type formula links of the form

p 4* r:m

where p is a forrnula node, r is any node, and m is a type
node. Such a 1lk says that formula node p represents the
s~aternient that node r is an instance of the type represented

- by m.

* A set of subtype links of the form

q , rn-<m'

9. where q is a formula node and m and mr' are type nodes.
Such a link says that q represents the formula that m is a
subtype of m', i.e. every instance of m is an instance of m'.

Let C by the congruence constraint graph derived from a vari-
able graph V by removing all free variable links, type declaration
links, type formula links, and subtype links. We say that C is the
congruence constraint graph underlying V.

Pd

, It may seem that the free variable links are redundant; it seems that
one could define the free variables of a node in terms of the subexpression
links discussed in chapter 4. Since a semantic modulation graph is just a
congruence graph with additional structure these subexpression links are
part of a semantic modulation graph. Unfortunat.ely the graph may contain

P- nodes that represent lambda closures (functions, Lypes, and type generators).
These nodes represent expressions that contain free variables but these nodes
are not involved in subexpression links in a way that allows the free variables
to be determined from the subexpression links. Thus explicit free variable
links are needed.

,'.

-U' The semantic modulation inference mechanisms manipulate bindings of

the form n '-- r where n is a variable node. A binding of the form n '-4 r
I can be viewed as an instruction to set the value of the variable n to the

node r. Changing the value of a given variable forces the values of certain
other nodes to change. In ordinary predicate calculus changing the value of

Il
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a variable x causes changes in the meanings of terms that contain x as a
free variable; the meaning of expressions which do not contain x as a free
variable will not change when z is changed. The situation in Ontic is slightly I
more complex. Suppose that x is a variable ranging over sets and that y is
a variable of type (MEMBER-OF x). In this case changing the meaning of the

A3 variable x may force a change the meaning of the variable y even though x
is not a free variable of y. In general if x is a variable which appears free in

*1 the type node of of another variable y then we say that y depends on x. This
notion of dependency can be defined in terms of the structure of a variable
graph.

Definition: Let s be a node in ; variable graph V and let n be

a variable node in V. We say that n is a free variable of s just
in case V contains the free variable link n < s. We say that s
depends on n just in case n is a free variable of s or there is some
free variable n' of s such that the type node of n' depends on n.

',I The soundness (or validity) of the semantic modulation inference process
relies on an additional property of graphs. More specifically, the soundness
of the semantic modulation inference process requires that the type node of
a variable n does not depend on n. Intuitively this condition allows one to
assign the value of a variable without changing the type of the variable.

Definition: A semantic modulation graph S is a variable graph
such that for every variable node n the type node of n does not
depend on n.

In addition to manipulating truth and color labels, the semantic modu-
* lation inference process manipulates variable bindings. More specifically, a

state of the semantic modulation inference process contains both a truth and
color labeling C and a binding set 3 where 3 contains bindings of the form
n a r where n is a variable node.

Definition: Let S be a semantic modulation graph. A binding
set /3 over S is a set of bindings of the form n ' r where n is

4
U
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a variable node and r is any node in S. We say that a variable
node n in S is bound under 13 if 13 contains a binding of the form
n -f r. If n is not bound under 13 then n is called fl-free.

In order to define the inference relation on semantic modulation graphs
the notion of dependence needs to be defined relative to a binding set 3.
Recall that if s depends on n then changing the value of n may force a
change in the value of s. Consider a binding of the from n '-+ r. In the
presence of the binding n '-4 r changing the value of r forces a change in
the value of n; in the presence of the binding n '-* r the variable n depends
on i. This observation leads to the notion of fl-dependence where 3 is any
binding set. If s 3-depends on n then, in the presence of the binding set 3.
changing the value of n may force a change in the value of s. The precise
semantic significance of the following syntactic definition will be discussed in
more detail in later sections.

Definition: Let 13 be a binding set over a semantic modulation
graph S.

We say that a node s fl-depends on a variable node nt if one of
the following conditions hold:

. n is a free variable of s.

* There exists a free variable ni' of s such that n' is bound
S-~ under 13 with binding n' t- r and r 13-depends on n.

- * There exists a free variable n' of s such that n' is not bound
under 13, i.e. is fl-free, and the type node for n' 13-depends

W on n.

I will use the term direct dependence to refer to the standard notion of
S' dependence as distinct from fl-dependence. If 83 is empty then fl-dependence
* is the same as direct dependence. In the definition of f3-dependence the

presence of a binding of the form n F-+ r causes the variable node n to be
treated as a copy of the node r.

0
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The inference relation -*s for semantic modulation graphs operates on
binding labelings where each binding labeling consists of a truth and coiOr

labeling together with a binding set.

Definition: Let S be a semantic modulation graph.

A truth and color labeling of S is a labeling C of the congruence
constraint graph underlying S.

A binding labeling T of S consists of a truth and color labeling Z
of S together with a binding set 0i over S.

Before generating a binding of the form n '-t r the system must be sure Lhat

r is an instance of the type of n. More specifically, for any given truth and
color labeling C and any node r it is possible to collect a set of types known

to contain r as an instance. These types are called the established types for

?r.

bf Definition: Let C be a truth and color labeling of a semantic
*modulation graph S and let r be any node in S. The set of C-

established-type-nodes for r is the least set of type nodes satisfying
the following conditions:

* If there exists a type formula link p #, r : m in S such
that C assigns p the label true then the ,iode rn is an C-
established-type-node for r.

* * If r' is a node which is assigned the same color as r under

* the labeling C then all C-established-type-nodes for r' are
also C-established-type-nodes for r.

* If m is an C-established-type-node for r and m' is assigneo
the same color as m under C then m' is also an C-established-
type-node for r.

* If rn is an C-established-type-node for r and S contains a
subtype link p -4* m -< rp' such that C assigns p the label
true then Tn' is an C-established-type-node for r.

*baa~~ er. 16X7JA'.. '.P We_'
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Before generating a binding of the form n -4 r the system must be sure
that this binding can be satisfied. For example suppose that n ranges over
numbers and consider the binding n -4 n + 1. This binding is well typed
because n ranges over numbers and n + I is always a number. However there
is no interpretation which assigns n the same number as n + 1. The system
ensures that a binding of the form n .' r can be satisfied by checking that
r does not depend on n, i.e. that it is possible to set the value of n to the
value of r without changing the value of r. It is now possible to define the
inference relation --* .

Definition: Let T be a binding labeling of S which consists of
the truth and color labeling C and the binding set /3. let T'
be a binding labeling of S which consists of the truth and color
labeling C' and the binding set /3'.

We write T-'s T' if L'-*c C' where C is the congruence constraint
graph underlying S and 3 =d' or if there exists a node r in S,
an C-established-type-node m for r, a variable n of type m such
that the following conditions hold:

e r does not fl-depend on n.

* n is /-free (i.e. not bound under /3).

* 3' = 3U{n -- r} and ' is the truth and color labeling
which results from £ by merging the equivalence classes of
nand r.

The bindings generated by -- 5 can not be deduced from information in
the graph; the process which generates bindings is non-deductive. However

* it is possible to assign semantic meaning to binding labelings of semantic
modulation graphs in such a way that the relation -+s can be proven to be
semantically sound.

-p"
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5.2 Semantic Soundness

This scction proves the semantic soundness of the inference relation --+s -

The inference relation is fully specified in section 5.1 and those readers
not interested in correctness proofs can safely ignore this section.

A Before oae caa prove a soundness theorem for the relation -+s one must
define a semantics for semantic modulation graphs. A semantics for a se-
rnantic modulation graph is a set of possible worlds analogous to the possible
worlds in a model of modal logic. Given this semantics it is easy to state
the soundness theorem for the inference relation -*s . The proof of the -*s
soundness theorem requires the notion of a W-valid binding labeli.g; the
relation -'-+. preserves the V-validity of bindiug labelings. Unfortunately
the definition of a W-valid binding labeling is fairly complex. Furthermore

* the proof that --+s preserves IV-validity is quite long and has been relegated
to a separate section. This section defines the semantics of semantic modu-
lation graphs, states the -s soundness theorem, and defines the notion of
W-validity which is preserved by --+,

5.2.1 Semantics

Semantic modulation graphs have a more sophisticated semantics than any
of the graphs used for purely quantifier free inference. The soundness results
for Boolean constraint graphs, equality constraint graphs and congruence

... constraint graphs were stated in terms of a single possible world w. On the
* ' other hand the soundness result for semantic modulation graphs is stated
,4 in terms of a set W of possible worlds. The set W of possible worlds is

* analogous to a semantic model of a modal logic.

The graphs generated by the Ontic compiler have an intended semantics
which is a special case of the general semantics defined in this section. Each
node in a graph generated by the Ontic compiler is associated with an expres-
sion in the formal language Ontic Expressions in the language Ontic have a
semantics which is defined in terms of a universe of sets. More specifically,

r - the meaning of an Ontic expression is defined relative to a universe and an

-,.
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interpretation of each variable as an object in that universe which is an in-
stance of the type of the variable. Consider a fixed universe and consider all
the type-respecting variable interpretations over that universe. Each type-

'" respecting variable interpretation over a fixed universe determines a truth
value for every Ontic lformula and a meaning (value) for every Ontic expres-
sion. The meanings can be treated as colors and thus each type-respecting
variable interpretation provides a truth and color labeling the graph gener-
ated by the Ontic compiler. Each such truth and color labeling is complete in
that every formula node has a truth label. The set of truth and color label-
ings that correspond to the different type-respecting variable interpretations
over a fixed universe determines a set W of possible worlds.

Definition: Let S be a semantic modulation graph.

A semantics for for S is a set W of possible worlds (complete
truth and color labelings) for nodes in S together with a binary
relation ":" on the color labels that appear in words in W.

The semantic domain of a semantics W for S is the set of all
color labels which appear in the worlds in W.

If c and c' are colors in the semantic domain of a semantics W
and if c:c' (i.e. c is related to c' under the relation ":') then we
say that c is an instance of the type color c'.

A color c in the semantic domain of a semantics W is called a type color if
,p there exists a type node m and a world w in W such that m has color c in w.

The relation ":" on colors allows a type color (or any color) to be viewed as a
. set. More specifically a type color c can be viewed as the set of all instances
A of c. Worlds assign colors to type nodes. Thus each world provides a way of

interpreting each type node as a set; the set associated with type node m in
-, world w is the set of all instances of the color of m in w. Note that the set

associated with a given type node can be different in different worlds.
-4

• Definition. The color c is said to be an instance of a type node

---- 4,
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rn, in a world w just in case c: c, where c, is the color of m in
the world u7.

A type node rn is said to be a subtype of a type node 7n' in world
w just in case every instance of m in w is also an instance of rn'
in w.

Variables are nodes whose interpretation can be varied. More specifically
suppose that n is a variable node with type node tn. Furthermore suppose
that w is a world such that c is an instance of the type of m in w. In this case
it should be possible in interpret the variable n as the color c, i.e. one should
be able to assign n the value c. Changing the interpretation of a variable n
forces changes in the interpretation of expressions that depend on n. These
intuitions are formally captured in the following semantic definition of an
assignment.

-'I

Definition: Let W be a semantics for a seMrnntic modulation
graph S.

4We say that two worlds w and w' in W agree on a node s if w
-. and w' assign s the same color label and if s is a formula node

then w and w' assign s the same truth label.

" Let n be a variable node in S, let c be a color in the semantic
domain of W, and let w be any world in W. An assignment of

s n to c in w is a world w[n := c] which assigns n the color c and
which agrees with w on all nodes that do not depend on n.

The links in a semantic modulation graph can be viewed as constraints
* on possible worlds. More specifically a sema.itics W is called a satisfactory

semantics for a semantic modulation graph S if the information in the links
in S holds true under the semantics W.

Definition: We say that a semantics W for a semantic modu-
ql lation graph S is a satisfactory semantics for S if the following

conditions hold:

~1N
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00 e Every world in V satisfies the congruence constraint graph
." underlying S.

a The labels of a node are determined by the labels of the
free variables of that node, i.e if w and w' are two worlds in
"W such that w and w' agree on all free variables of a node

s, then w and w' agree on s (in particular if s has no free
4% variables then all worlds in W must agree on s).

e If p r:m is a type formula link in S and w is a world in
W then w assigns p the label true just in case the color of
r in w is an instance of m in w.

SIf p m -< m' is a subtype link in S and w is a world in W
- then w assigns p the label true just in case m is a subtype

* of m' in W.

.F. e If n is a variable node of type m and c is an instance of m
in a world w then W contains an assignment win := c] of n
to c in w.

It is now possible to state the main soundness theorem of this section. The
proof of this theorem is long and complex and is given in the next section.

--+s Soundness Theorem: Let W be a satisfactory semantics
for a semantic moduiation graph S. Let T be a binding labeling
with an empty binding set such that every world in W satisfies
the truth and color labeling of T. Now suppose T -*s T' where

T' has binding set .3 and labeling V. If p is a formula node that
is labeled true under C', and p does not depend on any variable
bound under j, then p must be labeled true in all worlds in W.

5.2.2 The Proof of the --+s Soundness Theorem

The proof of the semantic modulation soundness theorem relies on the con-
struction of a complex property, or induction hypothesis, that is preserved

CY
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under the relation --*s . More specifically, given a satisfactory semantics W

for a semantic modulation graph S we define the notion of a W-valid bind-
- ing labeling and prove that --*s preserves WV-validity. A binding labeling

is W-valid if its binding set is W-legal and the equations represented by its
binding set imply the constraints in its labeling. The notion of a W-legal
binding set is quite complex. First of all every W-legal binding set must be

82 universally satisfiable in the following sense.

Definition: Let A' be a satisfactory semantics for a semantic
-: modulation graph S and let be a binding set over S.

A world w in A' satisfies the binding 3 if for every binding n i r
.- in 4, the world w assigns n and r the same color label.

*.O The binding set 3 is A'-universally-satisfiable if for eve;cy world w
in A' the semantics W also contains a world w[/?] such tha-t w[fl]

satisfies 3 and agrees with w on all nodes that do not depend on
any variable bound under 3.

It is interesting to note that a binding set can be type respecting but still
not -be universally satisfiable in the above sense. For example suppose that n
is a variable node that ranges over all numbers. The expression n + 1 always
denotes a number. Thus the binding n '-* n + 1 is type respecting. However
there is no world in which n equals n + 1 and so the binding n - n + 1 is
not satisfiable.

If one could prove that -s preserves the universal satisfiability of binding
sets and preserves the fact that a binding labeling's binding set implies the

* constraints in its labeling then one could prove the --*s soundness theorem.
Unfortunately the notion of a universally satisfiable binding set does not
provide a strong enough induction hypothesis; to prove that -4s preserves

, the universal satisfiability of binding sets it is necessary to prove that -- S
* preserves a stronger property of binding contexts. This stronger property is

called W-legality. Before defining A'-legality however we need the notion of a
1-assignment. In the presence of a binding set 3 we are only concerned with
those worlds that satisfy 3. More specifically if w is a world that satisfies 3
then we are interested in finding assignments win c] that also satisfy 3.

0.
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Definition: Let 0 be a binding set over a semantic modulation
graph S and let w be a world in a satisfactory semantics 1) for
S. Let n be a variable node in S and let c be a color in the
semantic domain of W. A /3-assignment of n to c in w is a world
w[j3, n := c] which satisfies 13, assigns n the color c, and which
agrees with w on all nodes that do not /3-depend on n.

Of course the above definition does not guarantee that that /-assignments
exist whenever c is an instance of the type of n. It turns out however that --+s
preserves the property that if n is not bound under / then f-assignments
exist for n. Recall that variables which arc not bound under / are called
3-free.

Definition: Let 0 be a binding set over a semantic modulation
j,: graph $ and let W be a satisfactory semantics for S. We say
he . that /-assignments exist in W if for every world w in W, every
A-" /3-free variable node n in S, and every instance c of the type of n

in world w under semantics W, the semantics IN also contains a
/-assignment w[O, n := c] of n to c in w.

-There are universally satisfiable binding sets which do not have the prop-
erty that 3-assignments exist. However, the existence of /-assignments is
one of the properties preserved under the relation -- s . The relation --+$

$, preserves a property called W-legality. A binding set /3 is W-legal if it is
Alp universally satisfiable, /-assignments exist, and there are not 8-dependency

loops as defined below.
S

Definition: Let IN be a satisfactory semantics for a semantic
modulation graph S, let 3 be a binding set over S.

S. $" A 3-dependency-loop is a variable node n such that either n is

bound under /3 with binding n i-, r and r #-depends on n or n is
'" /-free and the type node of n /-depends on n.

6.N
ON.
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We say that the binding set /3 is W-legal if there are no /-
dependency loops, /3 is W-universally-satisfiable, and f-assignments

%-. exist in W4.

4.N, The notion of a V-legal bnding set leads to the notion of a W-valid
-c. binding labeling. A binding labeling is V,-valid if its binding set is "i-legal

a:.d its color and truth labeling is implied by its binding set, i.e. every world
which satisfies its binding set also satisfies itG labeling.

Definition: Let WV be a satisfactory semantics for a semantic
modulation graph S. A binding labeling T is called W-i'alid if
the binding set of T is W-legal and every world in W which

- 0satisfies the binding set of T also satisfies the labeling of T.

It is now possible to state the main theorem of ti:is section: the relation -s

preserves'W-validity.

- -*5 Preservation Theorem: Let WV be a satisfactory seman-
tics for a semantic modulation graph S. If T is a W-valid binding
labeling and T-*s V, then T' is also W-valid.

Before giving the proof of the --+S preservation theorem it is important to
note that the -+S preservation theorem implies the -+s soundness theorem.

k" More specifically consider an initial binding labeling T, i.e. a binding labeling
with an empty binding set and such that every world in the satisfactory

* semantics W satisfies the labeling of T. It is easy to show that any such
initial binding labeling is W-valid. Now suppose 7-+s - ' and consider a" T

formula node p which is labeled true under the labeling of T' and such that
p does not (directly) depend on any variable bound under the binding set
of '. We must show that the inference relation -- s is sound in the sense
that under these conditions all worlds in WV label p true. To prove the -- s

soundness theorem we must show that all worlds in W4 label p true. Consider
any world w in W. The -,s preservation theorem implies that I' is W-valid

= V.

,2
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and thus the binding set of T' is W-legal. Let /3 be the binding set of T' the
binding set #3 is universally satisfiable and so there exists a world wt/l] that
satisfies/3 and that agrees with w on all nodes that do not (directly) depend
on variables bound under 3. Since T is WV-valid, and since w[f3] satisfies #3,
w[3] satisfies the labeling C which labels p true. Thus w[,3J labels p true.

t But since p does not depend on any variables bound under 3., w[3 ] must

.5 agree with w on p. Thus w must label p true. Thus the --+s preservation
theorem implies the --+s soundness theorem.

5.3 Proof of the -4s Preservation Theorem

*This section can safely be ignored by those readers not interested in correct-
ness proofs.

*2.

The proof of the --vs preservation theorem is fairly long and complex.
Most of the complexity of this theorem results from the definition of /3-

dependence. The above definition of 0-dependence implies that /-dependence
is non-monotonic in /3; the addition of a binding n -* r can remove as well
as add dependencies. In particular, suppose s directly depends on n, i.e.

j s depends on n relative to the empty binding set. Further suppose that t

directly depends on n'. This this case s depends on n' in such a way that
the dependency from s to n' passes through the node n. If the dependency
from s to n' passes through the node n then the binding n '-4 r can "erase"
this dependency; it is possible that s /3-depends on n' when fl is empty but
s does not 3-depend on n' if 83 consists of the single binding n '-4 r. Thus
the /-dependence relation is non-monotonic in 3; adding bindings to /3 can
remove dependencies.

v There is a simpler, monotonic, notion of /3-dependence which I will call
weak-fl-dependence. A node s weakly-fl-depends on a variable n if either s

directly depends on n or there is a binding n' -* r in /3 such that s weakly-
/-depends on n' and r weakly-/3-depends on n. In the current discussion I

* will use the term strong-fl-dependence to refer to the notion of /-dependence
that has been used used in the definition of --+,s and the definition of a W-

i legal binding set. Strong-f-dependence implies weak-fl-dependence but the

I
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converse does not hold; it is possible that s weakly-f#-depends on n but that
.s does not strongly-/0-depend on n. Weak-f-dependence is monotonic in 3;
adding bindings monotonically increases dependencies.

If weak- l-dependence had been used rather than strong-f-dependence
the relation -+s would still preserve W-validity and the proof of the preser-
vation theorem would be much simpler. Unfortunately the use of weak-3-
dependence would not allow as many bindings under the relation --+s . Fur-
thermore, strong-fl-dep-cndcnce provides a stronger universal generalization
inference mechanism. Universal generalization is discussed later.

Under strong-,i-dependence the proof of the --+s preservation theorem
is long and complex. The proof is divided into four parts. The first two
parts introduce two concepts needed in the proof: 0-dependency-pa-hs and
minimal/3-assignments. The third part contains the proof itself. This proof
relies on the first minimal assignment lemma which is stated but not proven
in the section on minimal assignments. The fourth part of the proof consists

f a proof of the first minimal assignment lemma.

5.3.1 3-Dependency-Paths

Before proving the -- s preservation theorem it is useful to prove certain
lemmas involving the notion of (strong) f-dependence. The following def-
inition and lemma provide an alternative characterization of the notion 3-
dependence.

N Definition: Let 3 be a binding set over a semantic modulation
* graph S. A /-dependency-path is a sequence <pn, n2, ... nk>
* ': each ni is a variable node and for each pair ni, ni+1 in the path

one of the following two conditinx.s hold.

. nt, is f-free and nj+ is a free variable of the type node of ni.
* ni is bound under 6 by virtue of the binding n i ' r and

ni+1 is a free variable of the node r.

4'
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If s is node in S such that n, is a free variable of s then the i3-
dependency-path <n1 , n2, ... nk> is said to be a /-dependency-
path from rode s to the variable nrt.

Lemma: If i3 is a binding set over a semantic modulation graph
S, s is any rnde in S, and n is a variable node in S then s /3-
depends on a n just in case there exists a 3-dependency-path from
s to n.

Lemma: There are no /-dependency-loops just in case there is
no /-dependency-path of length greater than 1 that begins and
ends with the same variable node.

The characterization of /-dependence in terms of /-dependency paths
* makes it easier to verify certain fLcts about /-dependency. The following

lemma precisely characterizes the non-monotonic nature of /3-dependency.
This non-monotonicity lemma is will be important in the proof of the -- s
preservation theorem.

Non-Monotonicity Lemma: Let /3 be a binding set over a
semantic modulation graph S. Let n " r be a binding such that
r does not /-depend on n and let /' be the binding set which
results from adding the binding n '-* r to /3. Now let s be any
node and let n' be any variable node. If s -depends on n' but s
does not /'-depend on n' then every /-dependency path form s
to n' must include n and r must not fl-depend on n'.

Proof: Suppose s /-depends on n' but that s does not /3'-depend
on n'. It is easy to show that every /-dependency path from s to
n' includes n. More specifically if there existed a /3-dependency-
path from s to n' that does not include n then thi path wil
also be a /'-dependency-path and thus s would 0'-depend on n'.
Now I will show that r does not /-depend on n. Suppose r did

S/3fl-depend on n'. In this case there exists a /-dependency-path
.. ~ from r to n'. The conditions of the lemma state that r does not

/3fl-epend on n and thus the 3-dependency path from r to n' does

hi
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not include n. Thus this path is also a 3-dependency path and
so r also O'-depends on n'. Furthermore, since s fl-depends on n'
there must exist a 2-dependency-path from s to n' and, by the
above comments, any such path must include n. Consider the
shortest possible 3-dependency path from r to n. This path only
involves n as the last node in the path and thus it is also a 3'-
dependency path. The /'-dependency-paths from s to n and from

It'. r to n' can be combined to yield a fi'-dependency-path from s to
n'. But this violates the assumption that s does not 3'-depend
on n'. Thus r must not f-depend on n'.

5.3.2 Minimal-fl-Assignments

* Intuitively one would like an assignment of the form n := c to atLer as few
rodes as possible. For example suppose that n is a variable node that ranges
over numbers and that n' is a variable node that ranges over numbers which
are greater than n. Since a is a free variable of the type of n', the variable
node n' depends on the variable node n. Now suppose w is a world in which
n is 2 and n' is 5 and consider the assignment n := 4. Since n' depends

* -. on n the assignment t := 4 is allowed to change the value of n'. In this
case however such a change is not needed; the old value of n', the numb,.-
5, is still an instance of the type of n' when n is set to the number 4. A
minimal-,3-assignment is a /-assignment that changes only those parameters
whose values must be changed.

- Definition: Let 4 be any binding context over a semantic mod-
-" ulation graph S and let n be any variable node in S. A 43-

supervariable of P. is defined to be any fl-free variable other than
n that f-depends on n.

Let 4 be a binding set over a semantic modulation graph 5, let
w be a world in a satisfactory semantics W for 8, let r be a

* fl-free variable node in S and let c be an instance of the type
of n in world w under semantics IV. A minimal-fl-assignment

1z: w[fl, n := c] of n to c in world w is a fl- ssignrnent w[fl, n := c]

-,
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of r, to c in w such that if n' is a /-supervariable of n and the
color of n' inder w is an instance of the type of n' in w[/3, n := c]
then w[/, n := c] agrees with w on n'.

Let .3 be a binding set over a semantic modulation graph S and
let 1,V be a satisfactory semantics for S. We say that minimal-
3-assignments exist in W' if for every world w in W, every 4-free
variable node n in S and every instance c of the type of n in
w under semantics W, the semantics W contains a minimal-fl-
assignment of n to c in w.

First Minimal Assignment Lemma: Let /3 be a binding set
over a semantic modulation graph S and let W be a satisfactory
semantics for S. If /3-assignments exist in W and there axe no
/3-dependency loops then minimal-/3-assignments exist in W.

The first minimal assignment lemma is proed by via a conceptual pro-
cedure for constructing minimal assignments. A minimal assignment can be
found by first making an arbitrary assignment and then "fixing up" the su-
pervariables that were needlessly changed by the assignment. The full proof
of the first minimal assignment lemma is fairly long and cumbersome and is
relegated to its own scction so that it can be easily avoided by the reader.

Second Minimal Assignment Lemma: Let /3 be a binding
set over a semantic modulation graph S. Let w be a world in a
satisfactory semantics W for S such that w satisfies 3. Let t be
a variable node in S, let c be a color in the semantic domain of
W' and let w[,3, n := cl be a member of A' that is a minimal-fl-
assignment of n to c in w. If s is a node in S such that w and
w[13, n := c] disagree on s, and if there are no /3-dependency loops
then there exists a 3-dependency-path from s to n such that w
and w[fl, n := c] disagree on every node in that path.

Proof: If there are no/3-dependency-loops then no /3-dependency
path is longer than the number of nodes in the graph S. Thus
there is an absolute maximum length for /-dependency-paths.

.4
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For any member s of D let the /3-path-distance from s to n be the
maximum length of any 43-dependency-path from s to n.

Let D be the set of all nodes s such that w and w[3, n := cl
disagree on s. Since w[3, :=-- c] is a .3-assignment of n to c in
w. if w and w[). n := c] disagree on s then s must .3-depend

, on n. Thus if s is in D then there exists a )- :ependency-path
* - from s to n. Now consider an arbitrary member s of D. We

must show that there exists a 3-dependency-path from s to n
such that the entire path is contained in D. It suffices to show
that there exists a fl-dependency-path contained entirely in D

-g from s to some node closer to n; a path in D from s to n can
be constructed from smaller paths that always get closer to n.
Since W is a satisfactory semantics for S the labels of a node

* are determined by the color labels of the free variables of that
node. Thus if s is in D, i.e. if w and w[/3, n := c] disagree on s,
then there must be some free variable n' of s which is also in D.

*-- Furthermore the 4-path-distance from n" to n must less than.or
-z. " equal to the /-nth-distance from s to n. If n' equals n then the

singleton path <n'> is a fl-dependency-path from s to n which
-. is contained er rarely in D. So suppo,, -n' is not equal to n. Now

there are two cases. First suppose that 4 contains a binding of
the form n' -" r. Since both w and w[fp, n := ci satisfy P3 both

"-2 worlds assign the same color to n' and r and since n' is in D,
r must be in D. But since r is in D some free variable n" of r
must be in D. But <n', rn"> is a /3-dependency path contained
entirely in D from s to n" and n" must be closer to n than s under
3-path-distance. Now suppose that n' is 4-free. In this case n'

is a 4-supervariable of n. Furthermore since n' is in D and since
*@ w[, n := c] is a minimal- 0-assignment of n to c in w, the color of

n' in w[/3, n := c] must not be an instance of the type of n in w.
C This implies that the type of n' in w[4, n := c] is different from
A: the type of n' in w. But since W is a satisfactory semantics the

type of a variable is determined by the color of the type node of
that variable. Thus the type node of n' must be in D. But this
implies that some free variable n" of the type node of n' is also
iD P. In this case <n', n"> is the desired 3-dependency-path in

'
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D from s to a node which is closer to n unde;r $-path-disance.

5.3.3 The -y Preservation Theorem

Except for the proof of the first minimal assignment :emma, the ground-
work has now been laid for the proof of the -s preservation theorem. The
theorem uses a simple lemma about C-established-type-nodes.

p Lemma: Let 'V Oe a satisfactory semantics for a semantic mod-
ulation graph S, let L be a truth and color labeling of S and let w

be a world in W such that w satisfies C. If m is an C-established-
* type-node for a node r of S then the color of r in the world w is

an instance of n in w.

The above lernma follows directly from the definition of a C-established-
type-node and the definition of a satisfactory semantics for a semantic mod-
ulation graph; the proof is left to the reader. Given this lemma we can now
prove the --+5 preservat;,n the-rem.

Proof of the -- s Preservation Theorem: Suppose that T is
W-valid and that T--*s T'- We must show that T' is 1-valid.

- First suppose that the binding set of T' is the same as the binding
set of T. In this case let fi be the binding set of T and let C and
C' be the labelings of T and T' respectively. Since the binding

* set of T' also equals 13 it is clear that the binding set of T' is
* NW-legal. Now let w be any world in I that satisfies 13. To show

that T' is W-valid it suffices to show that w satisfies C'. Because
44'ST is W-valid, w must satisfy C. Furthermore it follows from the
.2 definition of -+s that if the binding set of T equals the binding

S. set of T' then £-+c C' where C is the congruence constraint graph
underlying S. But now the soundness of -+c implies w satisfies

'I£'
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Now suppose that the binding set of T' is different from the
binding set of T. Let 3 and 6' be the binding set of T and
T' respectively and let C and ' be the labelings of T and T'
respectively. It follows from the definition of -"+s that 0' equals
3U{n t-- r} where n is a /-free variable of type m, m is an
C-established-type-node for r, and r does not /-depend on n.

First consider any world w that satisfies the binding set 3'.
We must show that w satisfies C'. Since w satisfies / it must
also satisfy the labeling C. Since w satisfies the binding n -p r
it must assign n and r the same color. Thus w must assign all
nodes which are equivalent to n under C and all nodes which are
equivalent to r under C the same color. The labeling ' is the
labeling derived from C by merging the equivalence classes of n
and r. Thus w satisfies C'.

Next I will show that there are no /'-dependency-loops. The
proof is by contradiction. Suppose there were a /3'-dependency-
loop. In this case there is a 3'-dependency-path of length greater
than 1 from a variable node to itself, i.e. a loop. This loop must
involve the node n because otherwise it would be a /-dependency-
loop and by assumption there are no such loops. But /3' contains
the binding n '-4 r and thus if there exists a /'-dependency-loop
that involves n there must exist a /'-dependency path from r to
n. Consider a particular #'-dependency path from r to n. The
node n might occur multiple times in this path. Consider the
subpath of this path that ends with the first occurance of n. This
subpath is a /-dependency path. But by assumption there are
no /-dependency-paths from r to n.

Now I will show that /' is W-universally-satisfiable. Let w be
any world in W. Since / is universally satisfiable there exists a
world w[/] which satisfies / and which agrees with w on all nodes
that do not depend on any variable bound under /. Because T is
W-valid and w[/3] satisfies /3, w[/3] must also satisfy L. Because
m is an C-established-type-node for r and w[/3] satisfies L, the
color of r in w[] must be an instance of m in w[/]. Let c be
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the color assigned to r in the world w[3]. Because ,q-assignments
exist there exists a 3-assignment w[0][fl, n := c] of n to c in w[$].
Since r does not -depend on n the world w[3][/3, n := c] must
assign r the color c. Thus, in addition to satisfying 13, the world
w[3][3. n := c] also satisfies the binding n -, r and thus this
world satisfies 3'. It remains only to show that w[AJ[, n := c]
agrees with w on all nodes that do not directly depend on any
variable bound under '3'. Let s be such a node. There does not
exist any direct dependency path from s to a node bound under
3'. Therefore there can not exist any fl-dependency path from
s to n because any such path would either be a direct path or
would include a direct path to some node bound under 13'. Thus

s does not f3-depend on n and thus w[13][/3, n := c] and w[/3] must
-- agree on s. But by the defir-ition of wdl], w[/3] must agree with

) won s.

Finally I will 3how that /'-assignmerts exist. Let w be any
world in V that satisfies 0', let i' be a /3'-free variab!e and let c be
an instance of the type of n' in the world w under the semantics
W-V. We must construct a ,'-assignment w[93', n' c of n' to c
in w. Recall that 03' differs from /3 in that 03' contains the one
additional binding n s-4 r. The world w[f3'. n' := c] is constructed
in one of three different ways depending on which, if any, of the
nodes n and r f-depend on n'. In all three cases the construction
begins by considering a ,8-assignment w[/3, := c] of n' to c in
w. Unfortunately the world w[/, n' := c] need not satisfy the
binding n h--. r. Furthermore, and more seriously, in one of the

-.. three cases /3-dependence is non-monotonic; there may be a node

s which $l-depends on n' but does not $'-depend on '. In this
*, case w[$, n' := c] may disagree with w on s even though s does
4 not 3'-depend on n'.

First consider the case where neither i nor r -depend on

ice W is a satisfactory semantics for S, 14 contains a /-
.a,, - ient w[$, n' := c] of n' to c in w. In this case w[,3, n' := c]

is also a 3'-assignment of ' to c in w. To see this first note that
<". w[f, n' c] satisfies the binding n '-4 r. More specifically, by

V.
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assumption w satisfies n -4 r and since neither n nor r /-depend
on n', w[13, n' := c] also satisfies n t-4 r. Furthermore the non-
monotonicity lemma implies that in this case every node which
/3-depends on n' also 3'-depends on n'. Every node on which w
-nd w[3, n' := c] disagree must /-depend on n' and therefore
very such node must 3'-depend on n'.

Now suppose that r /-depends on n'. Since /3 is W-legal, W
contains a/3-assignment w[/3, n' := c] of n' to c in w. Since T is
W-valid and since w[3, n' := c] satisfies #3, the world w[,3, n' := c]
satisfies C. However w[$, n' := c] need not satisfy the binding
n --+ r; the assignment to n' may change the value of r- In
this case we satisfy the binding n 4 r by reassigning n. More
specifically let c, be the color assigned to r in the world w[f3, n'
c]. Since the type node for n is an C-established-type-node for
r, the color c, must be an instance of the type node of n in the
world w[3, n' := c]. Thus W contains a /3-assignment w[f3, n'

c][3, n c.] of n to c, in w[p, n' := c]. I will show that w[3, n'

c][$, n :=c] is the desired '-assignnent of n' to c in w,. Since
r does not /-depend on n the world w[/3, n' := c][/3, n := c,]
assigns r the color cr and thus this world satisfies the binding
n i-4 r. Furthermore one can show that n' does not /-depend
on n. More specifically, in this case r /-depends on n' so if n' /3-
depended on n and then r would /3-depend on n which is ruled out
by the conditions governing the generation of bindings. Since n'
does not /3-depend on n the world w[#3, n' := c][0, n := c,] assigns
n' the color c. Finally consider some node s such that w[3, n' :=
c][0, n := cr] disagrees with w on s. We must show that s /3'-
depends on n'. Note that in this case either w and w[/3, n' := c]
disagree on s or w[/3, n' := c] and w[f3, n' c][3, n := c,] must
disagree on s. First note that if w[/3, n' c] disagrees with w
on s then s must /3-depend on n'. The non-monotonicity lemma
implies that if r /3-depends on n' then every node which /-depends
on n' also /3'-depends on n'. Thus if w[3, n' := c] disagrees with
w on s then s /'-depends on n'. Now suppose that w[/3, n' := c]
and w[/3, n' := c][/3, n := c,] disagree on s. In this case s must /3-
depend on n, Furthermore, one can show that s /'-depends on n;

.4
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since there are no 3-dependency-loops a 3-dependency-path from
s to n involves n as a the final node and therefore any such path
is also a /'-dependency path. Furthermore, since r /3-depends on
n' but does not 3-depend on n there exists a -dependency path
from r to n' that does not involve n. The path from r to n' is
also a 3'-dependency path. Thus there is a 3'-dependency path
from s to n'.

Now consider the non-monotonic case where n /-depends on
n' but r does not 3-depend on n'. Since /3-assignments exist in
W, minimal /-assignments also exist in W. Thus W contains a
minimal /3-assignment w[/3, n' := c] of n' to c in w. I will show
that this minimal /3-assignment is the desired Y-assignment of
n' to c in w. Since r does not /3-depend on n' the worlds w and
w[g, n' := c] agree on r; let c- be the color assigned to r in either
world. By the argument given above c., must be an instance of
the type of n in the world w[,3, n' := c]. Now by the definition
of minimal-/3-assignments the world u[/3, n' := c] must assign n
the color c,. Thus w[/3, n' := c] satisfies the binding n -4 r.
Now consider a node s such that w and w[/, n' := c] disagree
on s. By the definition of /-assignments s must /-depend on
n'. Now suppose that s does not 3'-depend on n'. In this case
the non-monotonicity lemma implies that every 3-dependency-
path from s to n' includes the node n. But the second minimal
assignment lemma implies that if w and w[/, n':= c] disagree on

,.a s then there exists a /-dependency-path from s to n' such that
w and w[/3, n' := c] disagree on every node in the path. But
this is impossible because every /3-dependency-path from s to n'
includes n and it has been shown that w and w[/3, n' := c] agree

• on n"/.

, 5.3.4 Proof of the First Minimal Assignment Lemma

" . Intuitively, minimal-/-assignments exist because there exists a conceptual
-'./'.procedure for constructing them. The procedure takes an arbitrary assign-

%.1-K
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ment and "fixes up" variables that were unnecessarily changed. Variables
are fixed up using a recursive procedure for targeted assignment.

Definition: Let /3 be a binding set over a semantic modulation
graph S. Let w and w' be worlds in a satisfactory semantics
W for S such that both w and w' satisfy 3. Let n be a 9-free
variable node, let c be an instance of the type of n in the world

w. A targeted-fl-assignment of n to c in w with target w' is a
il-assignment w[I3, n := c] of n to c in w such that if n' is a /3-
supervariables of n and the color of n' under the target world w'
is an instance of the type of n' in w[fl, n := c] then w[fl, n := c]
agrees with the target w' on n'.

A procedure for computing targeted assignments can be used to compute
"minimal assignments; a minimal assignment is just a targeted assignment

where the target equals the world in which the assignment is done. More
specifically, to prove the first minimal assignment lemma it suffices to prove
that targeted assignments exist.

V

Definition: Let fl be a binding set over a semantic modulation
graph S, let W be a satisfactory semantics for S and let n be a
/3-free variable node in S.

We say that targeted-O -assignments exist 16r n in W if for all
worlds w and w' in W and all colors c which are instances of the
type of n in w under the semantics W, the semantics W contains
a targeted-fl-assignment of n to c in w with target w'.

We say that targeted-fl-assignments exist in W if for every f-free
variable node n in S targeted--assignments exist for n in W4.

The conceptual procedure for computing a targeted assignment of n to c
takes an arbitrary assignment of n to c and recursively "fixes" the immediate-
.l-supervariables of n. Recall that a 0-supervariable of n is a fl-free variable

%I
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node n' other than n which #-depends on n. If there are on f-dependency-
loops then the notion of f-dependence determines a partial order on variable

aid -'_ ' nodes. If n' 3-depends on n then we can picture n' as being above n. The

*'2 immediate-f-supervariables of n are the least memibeis (under 3-dependence)
of the 3-supervariables of n.

Definition: Let 3 be a binding set over a semantic modulation
graph S. Let n be a f-free variable node in S.

V e An immediate-l-supervariable of n is a /3-supervariable nt' of rt
such that there is no variable in between n' and n, i.e. there is no

-P'" ,, /3-supervariable n" of n such that n' is a f-supervariable of n".

Observation: No two immediate-fi-supervariables of n f-depend
on each other, i.e. if n' and n" are distinct immediate-fl-supervariables
of n then n' does not f-depend on n".

*, _ Observation: If there are no f-dependency-loops then every3-
supervariable of n is either an immediate-fi-supervariable of n or
is a /-supervariable of some immediate-fl-supervariable of n.

The conceptual procedure for recursively computing targeted assignments

always terminates because the recursive calls always involve variables of lower
depth and no variable has depth less than 1. The depth of a variable is defined
as follows:

Definition: Let 43 be binding set over a semantic modulation
4graph S such that there are no f-dependency-loops. For each

variable node n let the f-depth of n be the length of longest 3-
dependency path ending at n.

Observation: If 43 is a binding set over S such that there are no
fl-dependency-loops and n is a f-free variable node in S then all
fi-supervariables of n have smaller fl-depth than n.
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4 The recursive conceptual procedure for computing targeted assignments
can be expressed as an induction proof that targeted assignments exist. The
proof is by induction on the f-depth of variable nodes.

Lemma: Let 3 be a be a binding set over a semantic modulation
graph S such that there are no 0-dependency-loops and let VV
be a satisfactory semantics for S such that /3-assignments exist
in W'V. Under these conditions targeted f-assignments also exist
in VV.

Proof: I will show by induction on the depth of variable nodes
that for all variable nodes n, if n is f-free then targeted assign
ments exist for n in IW. Every variable node in S has a #-depth

C of at least 1 (the singleton path < n > is always a dependency
path). Suppose that n has depth 1. In this case there are no
/-supervariables of n and thus any assignment of n to c satisfies
the definition of a targeted assignment. Thus if n is fl-free and

Khas depth 1 then targeted f-assignments exist for n in W. Now
suppose that n is a variable of depth k where k is greater than 1
and targeted-fl-assignments exist in IN for all f-free variables of

-' 4depth less than k. Now suppose that n is fl-free and let w and
w' be worlds in WN that satisfy 0. Let c be a color which is an
instance of of the type of n in the world w. We must show that
W contains a targeted-f-assignment of n to c in w with target w.
Since #-assignment exist in IN there exists a world w[fl, n := c]
in W which is a fl-assignment of n to c in w. Let n1 ,n 2 ... .n
be the immediate-/3-supervariables of n and let C1, c2 ,... Ck be the
target colors for n1 , n 2 ,... nj, i.e. c is the color of ni in the target

*world w'. Each variable ni has smaller depth than n so by the
induction hypothesis targeted-fl-assignments exist in IN for each
ni. Let W0 , Wt1 , W2 .. W,, be worlds in IN defined as follows: w0
equals w[#, n := c]. If ci is an instance of the type of ni in the
world wi-j then wi is a targeted-/3-assignment wI [P, ni := e4] of

d n, to ci in wi-, with target w'. If ci is not an instance of ni in the
world wi_1 then w, is a targeted-fl-assignment wi- [3, ni := bi]
with target w' where b is the color of ni in wi,: with target w'

"I
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(this targeted-d9-assignment fixes the fi-supervariables of ne). I

%tI will now show that wk is the desired targeted-f-assignment of n

to c in w with target w'.

Consider an arbitrary j3-supervariable n' of n and let ct be the
target color for n', i.e. the color assigned to n' by the target world

7 w'. We must show that if the target color ct is an instance of the

type of n' in the world Wk then Wk in fact assigns n' the target
color ct. So suppose that ct is an instance of the type of n' in the
world Wk. Now there are two cases. The variable n' is either an

,. - immediate-fi-supervariable of n or n' is a 0-supervariable of some
,C.' immediate--supervariable of n.

S,-. First consider the case where n' is an immediate-f-supervariable
ni of n and let mi be the type node of ni. The type node mi must
not 3-depend on any immediate-i3-supervariables of n and thus
for all 0 < j k the world wj must agree with wk on the type
node mi. In particular wi- 1 must agree with Wk on Mi. By as-
sumption the target color cc is a member of the type of ni in the
world wk and so ct must also be a member of the type of ni in the
world wi-. Thus wi is a target assignment wi-I [fl, ni := ct of ri
to its target color in wi_1 with target w'. Thus ni is assigned the
target color ct in the world wi. Furthermore ni does not fl-depend
on any other immediate f0-supervariables of n and thus wk must
agree with wi on ni and thus wk must assign ni the target color
Ct.

Now suppose that n' is a fi-supervariable of one or more of the
immediate-fi-supervariables nit. Let ni be the "last" immediate-
.- supervariable such that n' #-depends on ni, i.e. let ni be the

S immediate-f#-supervariable such that n' -depends on ni and n'
.'C. does not f-depend on any inmediate-fl-supervariable nj of n for

j > z. Let m be the type node of n'. Since n' does not /-depend
V,' on any nJ for j > i, the type node m must not f-depend on any
', -'nj for j > i. Thus the world wi defined above must agree with

* . Wk on the type node m. By assumption the target color ct is
.-. an instance of the type of n' in the world wk. Thus ct must be

StW
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an instance of the type of n' in the world wi. But wi is always
a targeted-fl-assignment of ni with target w'. Furthermore n' f-
depends on ni. Thus, by the definition of a targeted-f-assignment
and the fact that the target ct is an instance of the type of n' in
the world wi, the world wi must assign n' the target color ct. But
n' does not 3-depend on any nj for j > i and thus the worlds wi
and wk must agree on n'. Thus Wk assigns n' the target color c.

5.4 Focus, Termination, and Order Indepen-
-" dence

* This section describes a relation -*s which is similar to -+s except that
binding construction is guided by a set of focus objects. The relation --*5s
is fully described in the beginning of this section; section 5.4.1 can be safely
ignored by readers not interested in correctness proofs.

The semantic modulation inference relation -*s generates bindings of
the form n " r. Unfortunately, in most applications there is a very large
number of potential bindings. To make the semantic modulation inference
process effective one must select useful bindings. In the Ontic system binding
selection is guided by a set of focus nodes. Given a set Y of focus nodes the
Ontic system only generates bindings of the form n *-+ r where r is a member
of .

-. Focus nodes represent objects that the system is thinking about. Given a
set of focus objects the system uses forward chaining to generate facts about
those objects. A focus object is often a variable node. For example the user

* might direct the system to consider an arbitrary lattice. When this is done
the system chooses a variable node n whose type node represents the class of
all lattices. The variable n is then added to the set of focus objects. While
focusing on the arbitrary lattice n the system will generate facts that hold for
all lattices. In order to ensure that the facts generated about a focus variable

P n hold for all instances of the type of n the system must avoid binding n to
any particular object. In general the system avoids binding variables that
are depended on by focus objects; binding a variable depended on by a focus

0
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object can change the meaning of the focus object.

* The system also avoids redundant bindings. Suppose that n and n' are
two variables that have the same type node m and suppose that m is a C-
established-type-node for r. For the graphs generated by the Ontic compiler
there is no point in binding both n and n' to r; given the binding n '- r
nothing additional will be learned from the binding n' -+ r.

In summary the Ontic system imposes three constraints on the binding
process: variables are only bound to focus nodes, the system does not bind
variables depended on by focus nodes, and the system does not generate
redundant bindings. These three constraints lead to the following definition
of the inference relation -+. s defined relative to a semantic modulation
graph S and a set F of focus objects.

Definition: Let T be a subset of the nodes in a semantic mod-
ulation graph S.

Definition: Let T be a binding labeling of a semantic modula-
tion graph S such that T has binding set P3. Let T' be a binding
labeling of S with binding set 3'.

We write T- 3S7 T' if T- .5 ' and either /' equals 3 or the
difference between /' and / consists of a single binding n ' r
where the following conditions hold:

A, * r is an element of F.

* No member of F (directly) depends on n.

* $ contains no binding n' F-+ r where n' has the same type
node as n.

We say that a variable node n in S is F-protected if some focus
node in F depends on n. We say that an arbitrary node r is
FJ-protected if every free variable of r is F-protected. Clearly the

. elements of F are F-protected.

4-
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If 4 is a binding set generated by the relation -s " and if p is a node
. that is F7-protected then no variable depended on by p will be bound under

3. One effect of this statement is that if p is F-protected, 3 is a binding
set generated by - tsr, and n is any variable node then p 3-depends on n
just in case p directly depends on n. Furthermore all members of the focus
set F are F-protected and thus in the second restriction on bindings in the

4. above definition it doesn't matter whether one uses 4-dependence or direct
dependence - the two notions of dependence are the same when discussing
the dependence of F-protected nodes.

%.., The relation -+s " is simply a restriction of the relation -+s and thus
the soundness theorem holds for -s. Furthermore if p is F-protected then
no variable depended on by p will be bound by the inference relation -*s. .

More specifically we have the following special case of the soundness theorem.I.'

-. s Soundness Theorem: Let W be a satisfactory semantics
for a semantic modulation graph S. Let " be a binding labeling

<.- with an empty binding set and with a truth and color labeling £
such that every world in W! satisfies L. Now suppose T--'*sy 'T'
where ' has binding set j3 and truth and color labeling C'. If p
is a formula node that is F-protected and p is labeled true under

L' then p must be labeled true in all worlds in W.'F

5.4.1 Termination and Order Independence

This section proves a certain Church-Rosser property for relation -*s. The
-2 relation -*s is fully specified above and those readers not interested in cor-

14,. rectness proofs can safely ignore this section.

The relation -*s -operates on binding labelings of a semantic modulation
A" graph S. Since a given variable can only be bound once, and partial truth
1% labelings and color labelings can not be extended indefinitely, there cap be

S.' no infinite reduction chains of the form

,71- -- 2- Sy T 3--*S .F

S.,N
" .,
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Thus the relation -- sy is well founded.
J,

Let S be a semantic modulation graph, let T an initial binding labeling,
let F be a focus set over S, and let p be a formula node which is F-protected,
i.e. p represents some statement about the focus objects. The inference
relation -sy can be used in an attempt to prove p by binding variable
nodes to focus objects. More specifically the labeling T can be extended

via the relation -,sr until a normal form is found. Let T' and T be two
normal forms of T under the inference relation ---,sy . Now for the graphs
generated by the Ontic compiler either T' and " are both inconsistent
or they both agree on p. More specifically, the compilation of individual

. variables (which compile into generic individual nodes) and closed formulas
(such as the formulas in the lemma library) results in a homogeneous graph
as described below. For homogeneous graphs it is possible to prove that the

* normal forms T' and V- are equivalent under a certain equivalence relation
defined below. This equivalence relation has the property that if T' and T"
are equivalent then either they both exhibit premature termination of they
must agree on p. A binding labeling exhibits premature termination if it is
inconsistent or if there is some focus object r and a C-established-type-node
mn for r but there are no variables of type in that have been bound to r and
no variables of type m available for binding to r. In other words a binding
labeling exhibits premature termination if it runs out of variables to bind to

- focus nodes. Because the Ontic compiler generates variables on demand, a
binding labeling does not exhibit premature termination in practice unless
it is inconsistent. Thus if T' and T" are both normals forms of T under

. the relation -*sy, and if p is F-protected, they either T' and T" are both
inconsistent or they agree on p.

Definition: Let T be a binding labeling of a semantic modula-
tion graph S. We say that T is S-inconsistent if the labeling of

ST is C-inconsistent where C is the congruence constraint graph
44At,.underlyinDg S.

S. Let F be a subset of the nodes of a semantic modulation graph S
and let T be a binding labeling of Swith truth and color labeling
4. We say that T exhibits premature F-termination if either T

'-t
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k is S-inco.:sistent or there exists a focus cbject r in F and a C-
established-type-node m for r such that there is no binding of
the form n .- * r in the binding set of T where n is a variable of
type m and every variable of type m is either '-protected or is
already bound under the binding set of T.

A ' The equivalence relations defined in previous sections had the property
that any two inconsistent labelings were equivalent. The equivalence relation

defined below has the property that any two binding labelings which exhibit
premature termination are equivalent. In practice the Ontic system generates
variable3 on demand so that there are always enough variables in the graph
to aroid premature termination due a lack of variables. Thus, in practice,
premature termination always involves an inconsistency. If T is -rnalized
binding labeling with truth and color labeling C such that T does not exhibit
premature termination and if r is a focus object and in is a C-established-
type-node for r then some variable of type in is bound to r under the binding
set of T.

The graphs genetated by the Ontic compiler are homogeneous in the se:'se
that if n and n' are two variables with the same type node then n ar.d r,'
are "identical" as nodes in the graph. More specifically if n and n' are both
variables with the same type node then there exists a symmetry of the graph

N.,. which carries n to n'. A symmetry is a particular way that an otject is
identical to itself. For example a square is identical to itself when rotated
ninety degrees. The formal definition of symmetry is based on the general
notion of isomorphism. Two semantic modulation graphs are isomorphic if
there is a bijection between there nodes which carries the structure of one

-%. onto the structure of the other. A symmetry is an.isomorphism of an object
with itself, e.g. a rotation of a square is particular way that the square is

isomorphic to itself.

To precisely define the notion of isomorphism on- needs to define how a

S.-W" map carries the structure of a graph. More specifically consider a bijection c
which maps the nodes cf e semantic modulation graph S to some other set

U. of nodes V. The map t carries the graph 5 to the graph t(S) such that the
nodes of (S) consist of the elements of AV and the classification of nodes and

.1 the links of (S) are defined as follows:

BV

-1 .
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Definition: Let S be a semantic modulation graph and let t be a
J- bijection mapping the nodes in S to some set. The map t carries
'"i the graph S to the graph t(S) where the graph t(S) is defined as

follows:

*-The formula nodes of ,(S) are the objects of the form t(n)
where n is a formula node of S. The quotaLion nodes, type
nodes, variable nodes and unclassified nodes of i(S) are de-
fined similarly.

e If T is a litera! over the formula nodes in S then t(kP) is
defined so tht if T is the node n then t('I) equals t(n) and
if ID is the literal -'n then t(T) equals -,t(n). The clause
link3 of t(S) consist of all clause links of the form

* ,(T') V ,(TF2)... V ,k)

-. where S contains the clause link

* The equality links of t(S) consist of all links of the form

L(p) =- L(n) = I(m)

where S contains the link

' " p €: nrn r

7,

-- ? * The subexpression links, free variable links, type declara-
* tion links, type formula links, and subtype links in t(S) are

defined similarly.

Now consider a bijection t that maps the nodes of a graph S to any set.
*. As discussed above the bijection t carries the structure of the graph S over

to the structure of a new graph i(S). The bijection S also carries binding
labelings of S over to binding labelings of the graph t(S).

.

44
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Definition: Let. i be a bijection from the nodes of a semantic
modulation graph S to some set.

Let C be a truth an color labeling of S. The labeling s(C) is the
truth and color labd.ling of t(S) such that if C labels p true then
"(L) labels (p) true and if C assigns node r the color c then t(C)
a-signs t(r) the color c.

S-Let 3 be a binding set over C. The bijection t carries i3 to the
binding set t(3) over the graph t(S) where t( 3 ) consists of all
bindings of the form t(n) -, t(r) where n '-4 r is a binding in 3.

Let T be a binding labeling of $ with binding set 3 and truth
and color labeling £. The mapping t carries T to the binding
labeling t(T) with binding set t() and truth and color labeling

*-l 4C£).

.. For any bijection t from the nodes of a semantic modulation graph Sto
some set the grapn (S) is in some sense identical to the graph S even though
the nodes of t(S) may be different from the nodes of S. This observation
leads to the notion of isomorphism.

Definition: Two semantic modulation graphs S and S' are iso-
morphicjust in case 5' can be written as s(S) for some bijection

- t between the nodes of S and the nodes of S'. A map t which
_ carries S to S' is called an isornorphism between S and S'.

The notion of isomorphism kads to a notion of symmetry.

, Definition: A symmetry of a semantic constraint graph S is an
isomorphism of S with itself, i.e. a bijection i from the nodes of
S to themselves such that t(S) equals S.

As mentioned above the graphs generated by cornpiling individual variables
_ and closed formulas are highly symmetrical. More specifically, such graphs

4% : are homogeneous in the following sense.

"', 
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Definition: Two variables n and n' in a semantic modulation
:'.. graph S will be called S-identical if there exists a symmetry t of

S which exchanges n and n' and which is the identity map for all
nodes r which do not depend on either n or n'.

A semantic modulation graph S is called honogeneouLs if any two
* " - variables with the same type node are S-identical.

If variables of the same type are identical then it shouldn't matter which
variabie is bound to a given focus object; two labelings should be considered
to be equivalent if the only difference between them is that they bind different
but identical variables to the same focus object. More specifically let F be
a focus set over a semantic modulation graph S and let t be a symmetry of
S that is the identity function on all F-protected nodes. The symmetry t

'7- exchanges identical variables but preserves all F.-protected nodes. If T is a
binding labeling of S then the binding labeling t(T) should be equivalent to

.. "Definition: Let ."be focus set over a semantic modulation graph

.'. S.

A symmetry t of S is called F-preserving if t is the identity func-
tion on all '-protected nodes in S.

Two binding labelings T and T' of S are called immediately-S-

equivalent if they have the same binding set, they assign the same
truth values to formula nodes, and their color labelings define the
same equivalence relation on nodes.

Two binding labelings T and 7' of S are called SF-equivalent if
either both T and T' exhibit premature termination or there ex-
ists a .F-preserving symmetry t of S such that t(T) is immediately-
S-equivalent to T'.

S0..

It is possible ft prove that --+s- satisfies the diamond property modulo
S.F-equivalence and thus -sy is order independent.

i ..O-
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-'ys Normalization Theorem: FS is a homogeneous seman-
o. tic modulation graph and F is a focus set over S then the relation

q --+,:, is a terminating normalizer modulo SF-equivalence.

The above order independence result implies that in certain easily iden-
tified cases the answers generated by the the Ontic system do not depend on
the order in which inference operations are performed.

Corollary: Let F be focus set )ver a homogeneous semantic

modulation graph S let p be a F-protected formula node, and
let T be a binding labeling of 5. If T' and " are both nor-
malizations of T under --*sy then either both T' and T" exhibit
premature termination or T' and T" agree on the truth of p.

5.5 Assumptions

This section describes an inference relation --sA which performs inference
in the presence of assumptions (suppositions). The inference relation -,sA
is fully described in the beginning of the section. The relation --*s.34 ,that
incorporates focus, is described in section 5.5.2. Sections 5.5.1 and 5.5.3
involve soundness and unique normalization respectively and can be safely
ignored by readers not interested in correctness proofs.

Recall that a binding labeling T for S is W-valid if the binding set of T
is W-legal and the binding set of T implies the truth and color labeling of
T, i.e. every world in W that satisfies the binding set of T also satisfies the

* truth and color labeling of T. If W is a satisfactory semantics for the graph
S then the relation -s preserves W-validity. Unfortunately the notion of

VW-validity does not allow for assumptions. An assumption is a statement
. that is true in some worlds but not others. To properly handle assumptions

one must deal with labelings that are not W-valid.

;..
Definition: Let S be a semantic modulation graph and let W

%S

ALA
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be a satisfactory semantics for S.

An assumption set over S is a subset A of the formula nodes in
S. If w is a world in WV then we say that w satisfies A if w assigns
every formula node in A the label true.

Assumptions can be handled by an inference relation -- sA where A is
an assumption set over S. A later section will discuss how assumptions can
be combined with focus objects to yield an inference relation ---.Sg.A which
is a controlled restriction of the relation --+s.A defined here. However, focus
objects are ignored in the remainder of this section.

The labelings manipulated by the relation --+SA contain information that
is deduced from the assumption set A. The assumptions in A may contain

*O  assumptions abcut the types of objects. Thus a certain binding may be type
respecting relative under the assumptions in A even if that binding can not
be proven to be type respecting in general. Furthermore the assumptions in
A place restrictions on the free variables of the assumptions; it may not be
possible to assign values to the free variables of assumption without making
the assumptions false. Thus the relation "-*sA avoids binding variables which
are depended on by elements of the assumption set A. In fact the only
difference between the relations ---s and - sA is that --*SA avoids binding
variables depended on by the assumptions in A.

Definition: Let A be an assumption set over a semantic modu-
"i . lation graph S.

If f is a binding set over S then a variable node n in S is called
A I-free if n is 3-free, i.e. not bound under 3, and no assumption

* in A 3-depends on n.

Let T and T' be two binding labelings of S. We write T--+S TI
if T -s I' and either T and '' have the same binding set or the
binding sets of T' contains an additional binding n '-, r where n

-- .is A/I-free.

The restriction on bindings given in the above definition makes it possible to

'.

0.
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prove a soundness theorem for the relation -'4sA ; this theorem establishes
that -sA can be used to find logical consequences of a set of assumptions.

-*SA Soundness Theorem: Let 1W be a satisfactory semantics
for a semantic modulation graph S and let A be an assumption
set over S. Let T be a binding labeling with an empty binding set
and such that every world in W that satisfies A also satisfies the
truth and color labeling of T. Now suppose T -*SA * V where
T' has binding set $. If p is a formula node such that p is labeled
true under T' and no variable depended on by p is bound under
' then p must be labeled true in all worlds in W that satisfy A.

"'

4 Intuitively, the assumption soundness theorem holds because assumptions
do not constrain variables not depended on by the assumptions; variables not
depended on by assumptions are still free to range over their types and such
a variable can be assigned to any object that is known to be an instance of
its type. These intuitive comments are made more precise below.

.b

* 5.5.1 Proof of the -"*SA Soundness Theorem

Like the semantic modulation soundness theorem, the assumption soundness
theorem is proven by showing that the relation -*SA preserves a certain
property of binding labelings. More specifically the relation -t SA preserves
AW-validity where a binding labeling is AW-valid just in case its binding

:" set is AW-legal and its bindings together with the assumptions in A imply
its truth and color labeling. The notion of an AW-legal binding context is
similar to the notion of a W-legal binding context except that the concepts
involved are relativized in some way to the assumption set A.

An AW-egal binding set need not be kY-legal; the legality of bindings in
an 4W-legal binding set may depend on assumptions in A. More specifically,
an 4W-legal binding set need not be 14-universally-satisfiable; if j is AW-

* legal, and w is a world in VW such that w does not satisfy A, then kW need
not contain a world w[3] that satisfies # and agrees with w on all nodes

p

II
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i

* that do not depend on variables bound under .3. In defining the AVV-legal
binding sets the notion of W-universal-satisfiability is replaced by the notion
of A V-universal-satisfiability.

PU.

U--, Definition: L . W Ie a satisfactory semantics for a seiuatiIC
rmodulation graph S, let A be an assumption set over S, and let

i) be a binding set over S. The binding set /3 is AW-universally-
safis ijablc if for every world w in W em such that tv satisfies A
the semantics WV contains a world w[lO] such that w[l] satisfies
f) and agrees with v on all nodes that do not depend on any
variable hound under /1.

The following lemma states that if /3 is A-protecting in the sense defined
below then fl-assignments to Afl-free variables always preserve the truth of

the assumptions in A. Recall that a variable n is Afl-free just in case n is
/3-free and no assumption in A /3-depends on n.

Z Definition: Let A be an assumption set over a semantic modu-
lation graph S, let W be a satisfactory semnantics for S, and let/3 be a binding set over S.

The binding set /3 is called A-protecting if no variable depended
on by an element of A is bound under fl.

.A Lemma: If #3 is A-protecting, w is a world in W that satisfies A,
0n is an Ad3-free variable node, and c is an instance of the type of

n in a world w then any f#-assignments of n to c in w also satisfies
A.

- 'Proof: Since n is A13-free no assumption in A (directly) de-

pends on ri. Furthermore, I will show that no assumption in A
/-depends on n. More specifically, suppose that there existed a
i-dependency-path from and assumption p in A to the variable
n. Since p does not directly depend on n this path must involve

-A.-

Us-,

.",
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some variable bound under /1. Thus there must be a direct de-
pendenlecy path from p to sunme variable b)ound under /I. Butt this
is Imfpossib~le because ' 3 is assumned to be A-protecting. Thbus 11o

assumiption in A /1-depe(nds oil it. TIhuis if wI[/1. n :] tIIs a -
aiSgTIi iwiit. Of tl to C III IL)t II 01V ' II Mi '1I (i ) := C1 u iISt. ;tgree oI

a~ll C14iiits of A~. By ivi iio 1v sati-ifics A, so uw[, i.t

An .AW~-Iega1 binding set 13 need not have the property that /3-ssignmeiits
exist in WV. More specifically the existence of /3-assignments may depend onl

- the assumptions in A and thus if wo is a world that does not satisfy A there
may be a variable node Yz and an instance c of the typ~e of nz suich that. V dloes
not contain a /3-assigrnment of i to c in w. When dealing with assumptions
the requirement that /3-assignmnents exist mnust be restricted to those worlds
which satisfy the assumption set.

Definition: We' say that /3-assigLmcnts cxist in W4 undler A if for
every world w in W that satisfies bo0th 13 and( A, every A/3-frec
variab~le node it in S, and every instance c of the type of n iii
world w, the semantics W contains a /3-assignment of TL to c in
W.

It is now possible to define the AW-legal binding sets.

Definition: Let W be a satisfactory semantics for a semnantic
modulation graph S, let A be an assumption set over S, and let
f3 be a binding set over S. We say that the binding set /# is AI'V-
legal if there are no /3-dependency loops, /I is AW-universally-
satisfiable, /I is 4-protecting, and i3- assign merits exist in W under
A.

If /3 Is the empty binding set then there are no /3-dependency- loops; #3
is clearly AW-universally-satisfiable; and 13 is A-protecting. Furthermore If
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/3 is empty then fl-assignments exist in all worlds in W. Thus the empty
'-". binding set is .AW-legal.

The notion of an AW-legal binding context leads to the notion of an
AW-valid binding labeling. A binding labeling T is AW-valid if its binding

rn. -~ set is .AW-legal and its truth and color labeling is implied by its binding set
and the assumptions in A.

Definition: Let W be a satisfactory semantics for a semantic
modulation graph S and let A be an assumption set over S. A
binding labeling T is called .A,V-valid if the binding set of T is
.AW-legal and every world in W which satisfies both A and the
binding set of T also satisfies the truth and color labeling of T.

It is now possible to state the main theorem of this section: the relation
:-'- preserves .AW-validity.

- *s Preservation Theorem: Let W be a satisfactory seman-

tics for a semantic modulation graph S and let A be an as-
sumption set for S. If T is an AW-valid binding labeling and

S. T-*+S T', then T' is also AW-valid.

.7 The proof of the -- S4 preservation theorem is essentially the same as
the proof of the -*s preservation theorem given earlier; the proof will not

be given here. It is important to note however that the restriction on bind-
ings stated in the definition of --+S is essential for the -- s. preservation
theorem. More specifically suppose # contained a binding of the form n - r

S.: where some assumption in A depends on n. In this case the binding n r
I..5 ,may violate the assumptions in A; the binding may not be satisfiable by any

world that satisfies A.

._.



160('f. II 't' .5. I .;IN I ( I; N C V I FI ( .. \V'f!l [,l.s

5.5.2 Combining Assumptions and Focus Objects

Focus objects guide the choice of bindings generated in the Ontic system.
It is ewy t.o combine focus and a szSmptions. More specifically the (l;ttion
-. TA can be defi ied ts follows:

Definition: If T and T' are two binding labelings of a seiantiC.
modulation graph S then we write T-,S.A T' if T--SA T' and
T--sF V.

Fhe above definition implies that the relation --"sA is a restriction of
the relation - SA More specifically ---*ts$A is that restriction of -+sA which
only generates bindings n -, r where r is a member of the focus set -, no

* 4l other variable with the same type node as n has already been bound to r,
and no member of the focus set depends on n. Since -+s.FA is a restriction
of --4.A it preserves AW-validity.

5.5.3 Termination and Order Independence

dSince each variable can be bound at most once, and since truth and color
labelings can not be extended indefinitely, all of the inference relations dis-
cussed so far are well founded; there are no infinite inference chains.

Furthermore it can he shown that the ability of the relation "-+s- to
prove a given result does not depend on the order in which inferences are
performed. More specifically, let S be a semantic modulation graph; let F
be a focus set over S, and let p be a formula node which is F-protected,

* i.e. p represents some statement about the focus objects; and let A be an
assumption set over S. The relation -S)YA can be used in an attempt to
prove that p follows from the assumptions in A. More specifically let T an
initial binding labeling such that the labeling of T satisfies A and let T'
and " be two normal forms of T under the inference relation -- syA . It
turns out that the relation --"s-A is order independent in the sense that, for
the gra)hs generated by compiling individual variables and closed formulas,
either T' arid T" are both inconsistent or they both agree on p.

................................. i...."i" " i ....... **-*.. ""i
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The proof of the order independence result for the relation -3SyvA is very

similar to the proof of the order independence result for -sy In fact the
tb only difference between these two proofs involves the notion of premature

termination. It is possible that a binding labeling T' is normalized under
,*s-A even though it could be reduced further under -s-- More specifi-
callv, a variable might be 3-free and thus available for binding under -sy-

- but not A3-free and thus not available for binding under -- S.FA . In fact
it is possible that T' exhibits premature termination with respect to the re-
lation ---sr even though it does not exhibit premature termination with
respect to the relation --*sF . A binding labeling T exhibits premature A.S-
termination just in case the truth and color labeling of T is inconsistent or
there are not enough variables of the appropriate types available for binding

"V. to the focus objects (the precise definition should be clear and is not given
here).

The "*s74 normalization theorem is stated in terms of a certain equiv-
alence relation on labelings. The notion of ASS-equivalence can be defined
as follows:

Definition: Let - be a focus set over a semantic modulation
graph S and let A be an assumption set over S.

-:' A node r is called .4.-protected if every variable depended on by
r is also depended on by some element of F or A. (If r is A.T'-
protected then no binding generated by -*574 binds a variable

-' depended on by r.)

A symmetry t of S is called A.-preserving if s is the identity
function on all AS-protected nodes.

Two binding labelings T and F' of S are called AS-equivalent
if either both T and T' exhibit premature A.S-termination or

'C- there exists an AS-preserving symmetry t of S such that t(T) is
I imrrediately-S-equivalent to T'.
:0

Now it is possible to prove that if S is homogeneous then -- $y satisfies
the diamond property modulo ASFS-equivalence. Thus --*SyA is a terminat-

'O
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t ing normalizer relative to AYS-equivalence. Furthermore if 7 and 7' are
. ATS-equivalent and p is an AT-protected formula node then either 7 and

7' both exhibit premature termination or they both agree on the truth of p.
Thus the ability of the system to determine the truth of an A.Y-protected

formula does not depend on the order in which reductions are done.

5.6 Automatic Universal Generalization

This section describes an inference relation -- g which performs automatic
universal generalization. The inference relation --4g is fully described in the
beginning of the section and sections 5.6.1 can safely be ignored by read-
ers not interested in correctness proofs. Section 5.6.2 describes the relation

4 --+CA which is similar to -*o except that it handles a set of assumptions
(suppositions). Section 5.6.3 discusses semantic soundness and can be safely
ignored by readers not interested in correctness proofs. The relations -*g
and --*G are not guided by focus objects; section 5.6.4 describes a relation
that is guided by focus objects.

Universal generalization is a method for deducing formulas of the form

(FORALL ((X r)) 4')

More specifically, suppose that a variable X of type r appears free in the
formula 4) and that ) has been proven using only the fact that X is an instance
of the type r. In this case (D must be true no matter how one interprets X as
an instance of r and thus one can infer that the above universal formula is
true.

In the Ontic system the formula

(FORALL ((X r)) 4)

abbreviates the formula

(NOT
.J (EXISTS-SOME
," (LAMBDA ((X r))

(NOT D))))

"V

I
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LAMBDA is the only true quantifier in the Ontic system; classical quantification
is handled with the quantifier LAMBDA and formulas of the form

(EXISTS-SOME a)

a. where a is a type expression. In order to implement universal general-
ization aF a graph labeling inference mechanism two additional kinds of
links are needed corresponding to the quantifier LAMBDA and the ,perator
EXISTS-SOME.

Definition: An Ontic graph Q consists of a semantic modulation

4. graph together with

4 * a set of existential links of the form

p * 3m

where p is a formula node and m is a type node. Such a link
says that p represents the formula which says that there exist
instances of the type m.

* a set of closure links of the form

An.p = m,

where n is a variable node, p is a formula node such that
no free variable of p other than n depends on n, and m is
a type node. Such a link says that m represents the type
whose instances are the values of the variable n which satisfy
the formula represented by p.

* If 5 is the semantic modulation graph derived by deleting all
existential links and closure links from an Ontic graph G then S
is called the semantic modulation graph underlying !9.

Let !9 be an Ontic graph and let S be the underlying semantic
* modulation graph. A labeling of g is simply a labeling of S; a

binding set over 9 is a binding set over S; and a binding labeling
of 9 is a binding labeling of S.

%4,.

It.
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Universal generalization can be done whenever a fact has been proven
about a variable n and no assumptions have been made about n other than
that it is an instance of its own type node. The following definitions identify

", those variable nodes n such that -no assumptions have been made about n".
These definitions have been carefully designed to maximize the deductive

*. power of automatic universal generalization while still ensuring the soundness
of universal generalization inferences.

Definition: Let T be a binding labeling of an Ontic graph g, let

.2,A ;3 be the binding set of T, and let n be a variable node of g.

We say that two type nodes m and m' are known to be equal under
*T if the labeling of T assigns m and m' the same color label.

We say that ni is T-free if either n is 0-free or n is bound under
-. 3 with a binding n " t' where n' is a 0-free variable node such

that the type node of a' is known to be equal to the type node of
n under T.

If n is T-free then the q-freedom-source for n is defined as follows.
If n is /-free then the 7-freedom-source for n is n itself. If n is
T-free and the binding set of T contains a binding of the form
n - n' then the T-freedom-source for n is the variable node n'.

There are two forms of universal generalization used in the Ontic system:
.,. formula generalization and established type generalization. Formula gener-

alization generalizes the truth of a formula node. Consider a formula node
p and a variable node n such that n is a free variable of p. Now suppose
that p has been proven to be faise without using any assumptions about the
particular value for n. In this case one can deduce that the type An.p is
empty; there is no interpretation of n that makes p true. If the type An.p is
empty then it may be possible to determine that a certain existential formula

* node is false. A universal formula is always represented as the negation of
an existential formulas so formula generalization can result in assigning a
universal formal the label true.

...... ...... .....
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Established type generalization is a form of universal generalization that
involves subtype links If g contains a subtype link p t i m -< n' then
the formula node p represents the statement that every instance of the type
m is an instance of the type in'. Thus p represents a universally quantified
statement: a statement hat quantifies over all instances of the type n. Now
suppose that n is a variable with type node in and that n' is an established

- type for n where no assumptions have been made about n. In this case one
can deduce that every instance of m is also an instance of in' so the formula
p which represents the subtype relation must be true.

t" In addition to the two kinds of universal generalization Ontic graphs
are associated with existential generalization inferences. If an Ontic graph G
contains an existential link p 4* 3m then the node p represents the statement

g; that there exist instance of the type rn. Now if there exists a node r such
*i that mn is an established type node for r then one can infer that instances of

in exist and therefore that p must be true.
Ya

Definition: Let C_ be an Ontic graph. Let 7 be a binding labeling
of G with binding set fi and truth and color labeling C.

We say that a formula node q can be proven false by TQ-formula-
generalization over a variable node n just in case 9 contains a
closure link An.p = m such that £ assigns p the label false, n is
T-free with freedom source n', no free variable of p other than n
fl-depends on n', and g contains the existential link q * 3m.

We say that F. formula node p can be proven true by TC-type-
establishment-generalization over a variable node n just in case G

6-- contains a subtype link p * m -< m' such that m is the type
node for n, m' is a Cg-established type node for n, n is T-free
with freedom source n' and in' does not 3-depend on n'.

We say that a formula node p can be proven true by TQ-ezistential-
.4 generalization 9" 9 contains an existential link p t* 3m such that

there exists a ie r in 9 such that m is a C-established-type-
node for r.

=I
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Under certain binding labelings it is possible to prove that a certain for-
mula node is true even though that node has already been assigned the label
false. Binding labelings with this property are inconsistent.

Definition: Let G be an Ontic graph and Iet T be a binding
labeling of g. We say Llhat T is 9-inconsistent if any of the
following conditions hold:

* The color and truth labeling of Tis C-inconsistent where C
is the congruence constraint graph underlying 9.

* There exists a formula node p which can be proven false "'ia
79-formula-generalization but p is labeled true ander 7-.

* There exists a formula node p which can be proven true via
either TO-established-type-generalization or T-existential-
generalization but p is labeled false under T.

Given a definition of the kinds of inferences that are associated with Ontic
graphs and the notion of 0-inconsistency we can now define the relation -4g

Definition: Let C be an Ontic graph and let 7 and '' be binding
labelings of 9. We write T--- ' if either T--s 7' where S is the
semantic modulation graph underlying 9 or else 7 is 9-consistent,
the binding set of "T' equals the binding set of T, and one of the
following conditions holds:

4' * There exists a formula node p that can be proven false via
"TQ-formula-gen-ralizatioi2 and the truth and color labeling
of T' is the result of assigi. ing p the label false in the truth
and color labeling f T.

* There exists a formula node p that can be proven true via
either TO9-established-type-generalization or 9T-ex'istential-
generalization and the truth and color labeling of T' is the
result of assigning p the label true in the truth and color
labeling of T.

-" -
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t'. 5.6.1 Semantic Soundness

_% 4. The semantics of full Ontic graphs is very similar to that of semantic mod-
ulation graphs. However the semantics of full Ontic graphs must properly
account for the meaning of closure and existential links. The precise semantic
meaning of closure and existential links is captured in the following definition
of a satisfactory semantics for an Ontic graph.

'p Definition: A satisfactory semantics for an Ontic graph G is
a satisfactory semantics Vi) for the semantic modulation graph

"-' uiderlying 9 such that the following conditions hold.

*O.. * If p <- 3m is an existential link in g and w is a world in W
then w assigns p the label true just in case there exists a
color c which is an instance of m in the world w.

* If An.p = m is a closure link in g and let w be a world in
1W then a color c is an instance of m in w just in case c is
an instance of the type of n in w such that if w[n := c] is an
assignment of r. to c in w then w[n := c] assigns p the label
true.

The formal language Ontic has an intended semantics which can be de-
fined relative to a fixed universe of mathematical objects (a fixed model of
ZFC set theory). The meaning, or denotation, of an Ontic xpression can be

0/,, defined relative to a type respecting variable interpretation; a given interpre-

tation of Ontic variables as mathematical objects yields an interpretation for
.0 Qevery Ontic expression. In the graph produced by the Ontic compiler each
Y '- node is 2.ssociated with an Ontic expression. Since a type-respecting inter-

pretation of Ontic variables assigns a meaning to every expression, such a
variable interpretation can be used to assign labels to the nodes in the graph
produced by the Ontic compiler. Thus each variable interpretation yields a

. world and the set of all such variable interpretation yields a set of worlds, i.e.
a semantics. The intended semantics for the graphs produced by the Ontic

"S: compiler is a satisfactory semantics in the technical sense defined above.

Wt
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The semantic soundness theorem for Ontic graphs is analogous to the seman-
tic soundness theorem for semantic modulation graphs.

--+ Soundness Theorem: Let W be a satisfactory semantics
N for an Ontic graph Q. Let T be a binding labeling of G with an

empty binding set and with a labeling C such that every world
in W satisfies C. Now suppose T - * T' where T' has binding
set 3 and labeling L'. If p is a formula node that is labeled true
under ' and such that p does not depend on any variable bound
under )3 then p must be labeled true in all worlds in W.

The -- G soundness theorem imnplies that universal and existential gener-
* alization as allowed under -- G are semantically sound inference techniques.

As was the case for ---+c , the --+g soundness theorem is proven by showing
that -+g preserves W-validity. Recall that a binding labeling T is W-valid
if its binding set is W-legal and every world in w that satisfies the binding
set of T also satisfies the truth and color labeling of T. Both the notion
of a W-legal binding set and the notion of a W-valid binding labeling are
defined purely in terms of the semantics W; these notions do not depend on
graph structure and do not need to be redefined here. The proof of the ---C
preservation theorem uses the following lemma:

Freedom Source Lemma: Let W be a satisfactory semantics
for a semantic modulation graph Q. Let T be a W-valid binding
labeling of 9 with binding set f3 and truth and color labeling C.
Let n be a T-free variable node with freedom source n'. Let w be

• a world in W that satisfies 3. If c is an instance of the type of n
in w then the semantics W contains a f-assignment w[/3, n' := c]
of n' to c in w and for any such 3-assignment assigns n the color

'A C.

proof: Since n' is the freedom source for n then either n' is the
V same node as n or else 3 contains the binding n " n' and C

assigns the same color labels to the type nodes of n and n'. In

t.4.
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either case n' is fl-free; any world which satisfies /3 assign n and
n' the same color label; and any world which satisfies £ assigns
the type nodes for n and n' the same color label.

Since w satisfies 3 and T is W-valid, w must satisfy C and
thus w must assign the type nodes for n and n' the same color
label. Thus c is an instance of the type of n' in w. Thus, since 3 is
VV-" al and n' is fl-free, the semantics W contains a f-assignment
w[/3, n' := c] of n' to c in w. Furthermore w[/3, n' := c] satisfies
3 and assigns n' the color c so w[/3, n' := c] must also assign n
the color c.

.4..

_ -- 0 Preservation Theorem: Let W be a satisfactory seman-
* tics for an Ontic graph j. Let T and T' be binding labelings for

g. If T is W-valid and T--*+ T' then T' is W-valid.

Proof: Suppose that 7 is W-valid and that T ---g '. Either
T---s T' where S is the semantic modulation graph underlying

or else 7' is derived from T by universal or existential gener-
alization. If T-'*s 7' then the -4s preservation theorem implies
that 7' is W-valid. Now suppose T' is derived from T by either
universal or existential generalization. In this case the bindirg
set of T' equals the binding set of T; let g3 be this binding set.
By assumption T is VV-valid and thus #3 is V-legal. It remains
only to show that every world in W which satisfies g3 also satisfies
the truth and color labeling of '. Let C be the truth and color
labeling of T and let ' be the truth and color labeling of '.

A-', Consider a world w in W which satisfies /3. Since 7 is W'-valid,
- 1 w satisfies A. Now there are three cases.

First suppose that there exists a formula q which can be
proven false via T-formula-generalization over a variable node
n and that A' is derived from C assigning q the label false. In
this case there exists a closure link An.p = m and ai existential

*_O link q t* 3m such that C labels p false, n is T-free with freedom
source n', and no free variables of p other than n $-depend on n'.
To show that 7' is W-valid let w be any world in W that satisfies

0
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NJ /3'. We must show that w satisfies V'. Since T is W-valid, and

since /3 equals )', the world w must satisfy C. Thus to show that
w satisfies C' it suffices to show that w assigns q the label false.
Given the semantics of existential links it suffices to show that
there are no instances of in in w. The semantics of closure links
state that a color c is an instance of m in w just in case c is an
instance of the type of n such that if w[n := c] is an assignment of
n to c in w then w[n := c] assigns p the label true. Let c be any

N instance of the type of n in w and let u,[n := c] be an assignment
of n to c in w. To show that there are no instances of n it suffices

- to show that wIn := cJ assigns p the label false. By the above
freedom source lemma the semantics W contains a O-assignment

" w[!3, n' := c] of n' to c in w and any such /3-assignment must
. assign n the color c. Since w[13, n' := c] satisfies 3, and since T is

'lW-valid, the world w[/3, n' := c] must satisfy the labeling C and
4. thus w[/3, n' := c] must assign p the label false. It now suffices to
- show that win := c] agrees with w[,3, n' := c] on the formula p.

To show that w[n := c] and w[,3, n' := c] agree on p it suffices to
show that these two worlds agree on the free variables of p. Both
w[n := c] and w[fl, n' := c] assign n the color c. Now consider

N the free variables of p other than n. Since no free variable of p
other than n /-depends on n', w[/3, n' := c] agrees with w on
the free variables of p other than a. Furthermore, the definition
of an Ontic graph states that no free variable of p other than n
directly depends on n. Thus w[n := c] also agrees with w on the
free variables of p other than n. Thus w[r := c] and w[/3, n' := c]

agree on all the free variables of p and thus agree on p.

Now suppose that there exists a formula node p such that p
* can be proven true via TQ-established-type-generalization over

'V a variable node n and that L' is derived from £ by assigning p
.. true. In this case there exists a subtype link p - * m -< m' such

that mn is the type node of n, n is T-free with freedom source n'
and in' is a Lg-established-type-node for n such that m' does not

0. /3-depend on n'. To show that T' is W-valid consider a world w
-"that satisfies 3'. We must show that w satisfies ' Since I is W-

valid, and since /3 equals/3', the vorld w must satisfy L. Thus it

.
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suffices to show that w assigns p the label true. By the definition
of a satisfactory semantics it suffices to show that every instances
of m in w is also an instances of ma' in w. Let c be an instance
of m in w. It suffices to show that c is an instance of m' in w.
Since the variable n has type node m, the color c is an instance
of the type of n. Thus the above freedom source lemma implies

,. that WV contains a 3-assignment w[/3, n'; = c] of n' to c in w and

any such f3-assignment assigns n the color c. Since w[i, n' := c]
satisfies 3 and since T is IV-valid, w[o, n' := c] must satisfy L.
Now since m' is a C-established-type-node for n the color of n in
w[,3, n' := c] must be an instance of m' in w[,3, n' : i. Thus
c is an instance of rn' in the world w[3, n' := cl. To show that

-"'.": c is an instance of m' in w it now suffices to show that w and
"'"' w[,3, n':= c] agree on in'. But this follows immediately from the

assumption that n' does not $-depend on n'.

Now consider existential generalization. Suppose that Q con-
tains an existential link p € 3m such that there exists a node
r such that n is a C-established-type-node of r and that ' is
derived from C by assigning p the label true. To show that T' is
-W-valid let w be a world in W that satisfies 0'. We must show
that w satisfies V. Since/3 equals /3' and since T is W-valid the

"" world w must satisfy C. To show that w satisfies C' it suffices to
show that w assigns p the label true. Since w satisfies f, and
since m is a C-established-type-node for r, the color of r in w
must an instance of rn in w. But this implies that there exists
an instance of rr in w so by the semantics of existential links w
must assign p t e !e.bel true.

5.6.2 Assumptions

-At, Recall that the notion of W-validity does not allow for assumptions; to prop-
WYerly handle assumptions one must deal with labelings that are not IN-valid.

To deal with relations that not IN-valid we need a new inference relation

4.4. --*. The relation --+9A restricts bindings to avoid binding variables de-

O.i
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pended on by assumptions in A and also restricts universal generalization so
that one does not generalize over variables depended on by assumptions in
A.

Jl

''". Definition: An assumption set over an Ontic graph g is a set A

of the formula nodes in g.

Let Q be an Ontic graph, let A be an assumption set over g and
let T be a binding labeling of Q with binding set f.

A variable node n is called AT-free with freedom source n' just
in case n is T-free with freedom source n' and no element of A
,-depends on n'.

(. It is now possible to define the forms of inference associated with an Ontic
graph under a set of assumptions.

Definition: Let g9 be an Ontic graph and let .4 be an assumption
set over Q. Let T be a binding labeling of Q.

$ We say that a formula p can be proven false, by ATQ-formula-
generalization over a variable node n just in case p can be proven
false by Tg-formula-generalization over n and n is AT-free.

We say that a formula p can be proven true by ATQ-established-
type-generalization over a variable node n just in case p can be
proven true by Tg-established-type-generalization over .i and n

.is .A7 -free.

As the above definition indicatas, the inferences that are allowed in the pres-
ence of assumptions are slightly different from the inferences that are allowed

when no assumptions are present; certain universal generalization inferences
may be allowed in the absence of assumptions but not allowed when assump-

$ tions are present. This difference in the allowed inferences is reflected in a
difference in the notion of consistency.

0.-.t
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Definition: Let ! be an Ontic graph, let T be a binding labeling
of 9 and let A an assumption set over g. We say that T is Ag-

" Jinconsistent if any of the following conditions hold:

* The color and truth labeling of Tis C-inconsistent where C
is the congruence constraint graph underlying C.

* There exists a formula node p which can be proven false via
ATQ-formula-generalization but p is labeled true under T.

* There exists a formula node p which can be proven true via
either A4T7-established-type-generalization or T-existential-
generalization but p is labeled false under T.

Given a definition of the kinds of inferences that are associated with Ontic
graphs under assumptions and the notion of Ag-inconsistency we can now
define the relation -- QA

Definition: Let g be ai Ontic graph, let A be an assumption
£ -) 2set over g, and let T and T' be binding labelings of g. We write
- - Q ; 7' if either T--s ' where S is the semantic modulation

graph underlying 9 or else T is A4-consistent, the binding set of
7' equals the binding set of T, and one of the following conditions
holds:

*,There exists a formula node p that can be proven false via
7A9-formula-generalization and the truth and color label-

r ing of T' is the result of assigning p the label false in the
poll truth and color labeling of T.

There exists a formula node p that can be proven true via ei-
ther ATC-established-type-generalization or 9T-existential-
generalization and the truth and color labeling of T' is the
result of assigning p the label true in the truth and color

" labeling of T.
- N--.
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* .5.6.3 Soundness under Assumptions

The soundness theorem for the relation --+9A is analogous to the soundness
theorem for --+-A

--+ A Soundness Theorem: Let WX be a satisfactory semantics
for an Ontic graph G and let A be an assumption set over G. Let
T be a binding labeling with an empty binding set and such that
every world in W that satisfies A also satisfies the truth and color

,- labeling of T. Now suppose T -- C T' where T' has binding
set f. If p is a formula node such that p is labeled true under V2
and no variable depended on by p is bound under )3 then p must
be labeled true in all worlds in 1W that satisfy A.

The soundness theorem for -*+G can be proven by showing that ---9'A

preserves AVV-validity. Recall that T is AW-valid if the binding set of T is
"~i.' -A.W-legal and every world in W that satisfies both A and the binding set of

T also satisfies the truth and color labeling of ". The notion of .W-validity
is defined in a purely semantic way; the AW-validity of the binding labeling
T does not depend on any graph structure and need not be redefined here.

--*Q Preservation Theorem: Let W be a satisfactory seman-
tics for an Ontic graph G and let A be an assumption set for 94.
If 7 is an AW-valid binding labeling and T---OA T', then T' is
also AW-valid.

The proof of the --+A preservation theorem is directly analogous to the
proof of the --+ preservation theorem and is not given here. The proof relies

on the fact that if n is AT-free with freedom source n' then no element of
A fl-depends on n' where 3 is the binding set of T. More specifically, if

: n' is fl-free and no element of A f-depends on n' then, by definition, n' is

*'" 3AO-free. Since n' is Ai-free, and # is AW-legal, i3-assignments exist for n'
*, ', in all worlds that satisfy both 8i and A. If n' were f3-fiee but not Ae-free

then the AW-legality of would not ensure that f-assignments exist for n'.

t
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5.6.4 Focus, Termination and Order Independence

Of course it is possible to control the generation of bindings with focus ob-
jects. A focus set over an Ontic graph g is simply a subset of the nodes of G.
One can define the relation ---QY.A as a restriction of the relation -- GA ; the
relation -g.A never bindings variables which are F-protected, only binds
variables to focus objects and never binds two variables with the same type
node to the same focus object. Because the relation -- YrA is a restriction
of the relation 'QA it clearly preserves AW-validity.

Order independence for the relation that ---g-.A requires a restriction
an universal generalization inferences. More specifically the freedom source
of the variable being generalized over in a universal generalization inference
must be F-protected. This ensures that no binding operation allowed under

4q ~-QYA binds the freedom source involved in a universal generalization infer-
ence. This in turn ensures that all allowed universal generalization inferences
commute with all allowed binding operations. This restriction on universal

.-: generalization inference has not been a problem in practice.

4
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Chapter 6

The Ontic Language

The formal language Ontic consists of twenty three kinds of expression plus
seven macros that provide convenient abbreviations for expressions. The
Ontic compiler converts a set S of Ontic expressions to an Ontic graph G(S).
The graph G(E) is simpler than the set E; although there can be twenty three
different kinds of expressions in S there are only nine kinds of links in Ontic
graphs. The compiler is described in chapter 7, the current chapter describes
the language Ontic and "various syntactic properties of that language.

* There are several aspects of the syntax of the Ontic language that need
explaining. First of all, most of the axioms of Zermelo-Fraenkel set theory
are encoded in the notion of a syntactically small type expression; a type
expression can be "reified" as a set only if the type expression is syntactically
small. This chapter also describes free variables and substitution; the type
system used in the Ontic language makes these notions somewhat complex.

I

6.1 Non-Minimality of the Ontic Language

* The Ontic language is not semantically minimal; many of the constructs in
the Ontic language could be semantically defined in terms of more basic con-
structs. There are three reasons for the non-minimality of the Oatic language.

U.
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First, the Ontic system encodes the axioms of set theory in the syntax of the
Ontic language. Second, the non-minimality of the Ontic language allows the
compilation process to generate efficient graph structure. There is an analogy

-between the non-minimality of the Ontic language and the non-minimality
of programming languages - greater efficiency is achieved by allowing the
compiler to directly implement certain non-minimal language features. Fi-

nally, directly compiling non-minimal language features improves the input-
output behavior of the system; there are automatic inferences based on the
graph structure generated from the non-minimal language which would not
be done automatically if the compilation process was restricted to a minimal
language.

The notion of a syntactically small type expression encodes many of the
axioms of set theory. Rather than have explicit comprehension axioms, the
Ontic system allows the construction of sets of the form

(THE-SET-OF-ALL r)

-. w where r is a syntactically small type expression. Not all type expressions are
syntactically small; the types SET, GROUP, FIELD, or TOPOLOGICAL-SPACE are
all large and an error is generated if an attempt is made to construct the set

* of all sets or the set of all topological spaces. On the other hand if s is a
term that denotes a set then the type

(SUBSET-OF s)

is syntactically small and one can construct the set

(THE-SET-OF-ALL (SUBSET-OF s))

The smallness of types of the form (SUBSET-OF s) corresponds to the axiom
of power set; for every set s there exists another set P(s) such that P(s)

*@ contains all subsets of s. The smallness of types of the form (EITHER t1 t 2)
corresponds to the set theoretic axiom of pairing. The smallness of lambda

*. types corresponds to the axiom of restricted comprehension and the smallness
of types of the form (RANGE-TYPE f) correspond to the axioms of union, and
replacement.

The non-minimality of the Ontic Language also allows the graph G(E) to
be smaller than it would be otherwise. For example consider a type expression

Tttsr
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of the form

(OR-TYPE rl -r2 )

An object is an instance of this type just in case it is an instance of either
he type r1 or the type 72. Semanticallv this type is equivalent to the type

(LAMBDA ((X THING)) (OR (IS X r1) (IS X 72)))

However the lanuita type quantifies over the type THING and generates ad-
ditional graph structure for each variable of type THING. By implementing

* the OR-TYPL operator as a primitive one can avoid quantifying over the type
THING and thus create less graph structure. The primitive implementations
of IF, EITHER and RANGE-TYPE lead to similar savings in the amount of graph
structure created.

The non-minimality of the Ontic language also leads to greater inferential
-- power. For example consider the reification of functions. Expression in the

Ontic language are divided into five syntactic categories: terms, formulas,
functions, types and type-generators. Of t ese five categories terms are the
only first class objects; variables can be bound only to terms and only terms
can be used to specify focus objects. However certain type expressions (syn-
tactically small type expressions) can be reified. i.e. coerced to a term via the
operator THE-SET-OF-ALL. Furthermore, functions can be reified, or coerced
to terms, via the operator THE-RULE. If f is a syntactically small function ex-
pression which takes one argument then the Ontic expression (THE-RULE f)
denotes the set of pairs that corresponds to the function f. Unlike the func-
tion expression f, the term expression (THE-RULE f) is a first class object;

:- variables can be bound to it and it can be used as a focus object in an Ontic
context. The operator THE-RULE is not semantically minimal; it is possible to

* .define the operator THE-RULE using the operator THE-SET-OF-ALL. However
the primitive implementation of the operator THE-RULE allows the system to
perform inferences in a single step that would take many steps if the system

I' were forced to reason purely in terms of the operator THE-SET-OF-ALL. More
specifically the Ontic language includes the operator APPLY-RULE such that

* for any syntactically small function f of one argument the implementation
p. of the operator THE-RULE allows the system to derive the following equation

in a single step.
Ii
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(IS (APPLY-RULE (THE-RULE f) x)
(EQUAL-TO (f x)))

If THE-RULE were a macro that expanded to an expression involving THE-SET-OF-ALL
then the above equation would have to be proved using a several step proof
for each reified function f. One can not state the above equation as a lemma

A about all functions because one can not qaantify over functions. However
one can quantify over rules and the operator THE-RULE provides a way of
reifving syntactically small functions as rules.

- 6.2 The Ontic Language

The expressions in the Ontic language are divided into four categories: terms.
functions, formulas, types and type generators. Terms are expressions that

pdenote mathematical objects such as sets. pairs, graphs, partially ordered
- . sets and latties. Function expressi,ns denote operators (functions) that

map objects to objects. Formulas are expressions that are either true or false
in any given interpretation. Type expressions denote one place predicates on
objects; if r is a type expression and the predicate denoted by r is true of an
object x, then we say that x is an instance of the type r. Type generators
are operators which take arguments (which are always terms) and return a
type. For example the type generator GREATER-THAN takes a partially

_.A ordered set P and an element z of P and returns a type whose instances are
the elements of P which are greater than x under the ordering imposed by
P.

Function., types, and type generators can be A-expressions. A A-expression
is an expression of the form

* (LAMBDA ((XI r1 ) (X 2 r2) ... (Xk rk)) body)

A A-expression always denotes an operator; the above expression is an op-
erator that takes k arguments wher- each argument rmust be an instance
of the associated type. If the body of a A-expression is a formula then the
expression is a type expression and is only allowed to take one argument. If
the body is a term then the A-expression is a function; if the body is a type
then the A-expression is a type generator.

1I
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There are actually two versions of the Ontic language which differ in the
way variables are treated. The first version of the language is the one used
in the top level user interface. In this external version of the Ontic language
a variable is simply a symbol such as X and the same symbol can be used
in different ways in different contexts. The external version of the language
should be distinguished from the internal version where individual variables
have more structure and stronger identity.

There is a one to one correspondence between the nodes in the graph
generated by the Ontic compiler and expressions in the internal language.
In particular there is a one to one correspondence between variable nodes in
the graph structure and variables of the internal language. This one to one
correspondence would be impossible for the external language because the
external language allows a given symbol to be used as variables of different

* types in different contexts. In the internal version of the Ontic language
each variable has a fixed type that is taken to be a syntactic property of that
variable. The following A-type is an example of an external expression:

,2

(LAMBDA ((X SET))
(IS-EVERY (MEMBER-OF X) SET))

This external expression gets mapped to the following internal expression

(LAMBDA (x s f)

(IS-EVERY (MEMBER-OF zsn) SET))

Note that in the translation process the external symbol X has been replaced
by the internal variable xsr of type SET.

Only the internal language is formally defined here. Fortunately, the
external and internal versions of the Ontic language are very similar and the

* definition of the external language should be clear from the definition of the
internal language. A method of translating external expressions into internal

* expressions is discussed in a later section.

An internal Ontic expression can be formally defined as one of the twenty
three different kinds of expressions listed below.

'S
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Deiiin An internal Orttic ex'pression is one of the following:

,; 9 A type expression which is one of the following:

m]- One of the type symbols THING, SET, RULE or SYMBOL.
--- .:"The type SYMBOL is syntactically small while the types

" ':' 'THING, SET, and RULE are all large.

?. :"...- An application of the form (g tl t2 --- tk) where g is a
2 ' type generator of k arguments and each ti is a term. A
~type expression of this form is syntactically small just

. in case the type generator g is syntactically small.
' - A A -type of the form (LAMIBDA (xr) CI wheie x' is vari-

able of type T- and (P is a formula. A type of this form
is syntactically small just in case the domain type -r is

@ syntactically small. The class of instances of this type
"' is a subclass of the instances of the type r.

::.::- An expression of the form (OR.-TYPE rl r2) where 7-1

-::.,and -r2 are types. A type expression of this form is syn-
tactically small just in case both the types rl and -r2 are
syntactically small.

- An expression of the form (RANGE-TYPE f) where f a
function expression of any number of arguments. A type
expression of this form is syntactically small just in case

-- l the function expression, f is syntactically small.

',T •A term which is one of the following:
-A variable x' where r is a type expression. Each type

9..-. eqecex, z .

is associated with aninfinite sqecsof variables of type r.

@ -An application of the form (f tl t2 ... tk) where f is a
function expression of k arguments and each ti is a term.

,r is a syntactically small type expression.
CHAn expressio of the form (THE r) where r is a syntac-

Dein tically small type expression.

SA conditional expression ofwtheform (IF on to t2) where
ty is a formula and and t2 are terms.

tssyy
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- An expression of the form (THE-RULE f) where f is a
syntactically small A-function of one argument.

-r' - An expression of the form (QUOTE symbol) where symbo!
is an atomic symbol.

e A function expression which is one of the following:

- A A-func :)n of k arguments of the form
(LAMBDA (x4I xf2 ... x) body)

,. where each x4' is a variable of type i and body is a term.
A A-function is syntactically small just in case each type
expression ri is syntactically small.

, - An expression of the form (THE-FUNCTION t) where t
-- is a term. The term t should denote an instance of the

type RULE, i.e. something expressible as (THE-RULE f).
cv All functions of this form are functions of one argument

and are syntactically small.

.4% - The primitive function symbol RULE-DOMAIN which is a
large function of one argument. This function should
only be applied to instances of the type RULE.

* A formula which is one of the following:

- A type formula of the form (IS t r) where t is a term
and r is a type expression.

- An existence formula of the form (EXISTS-SOME r) where

, .r is a type expression.
- An equality of the form (- el e2) where el and e2 are

any internal Ontic expressions.

* - A Boolean application of formulas constructed with one
of the boolean operators NOT, OR, AND, IMPLIES, or IFF.

- A subtype formula of the form (IS-EVERY a, r) where
a and r are type expressions.

* A type generator expression which is one of the following:

- One of the primitive type generators EQUAL-TO, MEMBER-OF,
SUBSET-OF, EITHER or RULE-BETWEEN. The type gener-

_A
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ators EITHER and RULE-BETWEEN both take two argu-
meats, all the others take one. All these type generators
are syntactically small.

- A non-primitive type generator of k arguments of the
form

(LAMBDA (x x' ... x k ) body)

where body is a type expression. A type generator of this
form is syntactically small just in case the type body is
syntactically small.

* An unclassified combinator expression. Combinator expres-
sions are generated when a A-type is compiled into graph
structure. Combinator expressions are discussed in chap-

-1 ter 7.

The large size of the internal language makes it difficult to define prop-
erties of expressions; to define an operation on internal expressions it seems
that one must define tbat operation on each of the twenty three different
kinds of exnressions. Fortunately this problem can be avoided. More specifi-
cally the twenty three different kinds of expressions can be classified into four
groups: atomic expressions, variables, lambda expressions, and extensional
applications.

Definition: Xn atomic expression is either one of the primitive
type symbols, one of the primitive type generator symbols, or a

quotation of the form (QUOTE symbol).

A A-expression is either a A-type, a A-function or a non-primitive
type generator.

An extensional application is an expression other than a variable,
an atomic expression or a A-expression. All extensional applica-
tions have the form

'4 (op arg arg2 ... argk)

U
4
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6.3 Binding and Freedom

There are some subtleties in the internal language concerning the notion of
a free variable. The external formula

(EXISTS ((X (MEMBER-OF S)))
(IS X (MEMBER-OF U)))

Is an abbreviation for the external formula

(EXISTS-SOME
(LAMBDA ((X (MEMBER-OF S)))

(IS X (MEMBER-OF U))))

2? Which corresponds to the internal formula

(EXISTS-SOME
(LAMBDA (x (M sN8 'F ssf))

. (IS x(Im ns - of SKSET) (MEMBER-OF u s T )))))

This formula says that there exists a member of ssr which is also a
x member of u". Thus the variable srn must be a free variable of this for-
.E:. mula. Note however that .s appears in the type of the bound variable

X M E
R
-

" p ' sET. More generally consider any A-type of the form

-" (LAMBDA (W") 0)

A free variable in the type r is considered to be free in the A-type.
IC.

In general consider a A-expression of the form
(LAMBDA (x" x2 ... x") body)

,, If this A-expression is a A-type then it denotes the class of instances of that

type. If the A-expression is a function or type generator then it denotes
-N a certain class of tuples. In either case the meaning of the A-expression
S depends on the classes associated with the types ri which in turn can depend
S. on the interpretation of free variables in the type expressions. Thus the free

variables of a A-expression include free variables in the types of the bound

parameters.

ad.

S.
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Definition: A variable y' appears f:ee in an internal expression
- e if one of the following conditicns hold'

* e is the variable y5 .

" e is an extensional application

(op arg1 arg2 ... argk)

and y' either appears free in the operator op or one of the
aiguments argi

hr. * e is a ,-expression of the form

(LAMBDA (4 z ... x4) body)

*where y' is not equal to any 4' and y' appears free either
in body or the type ri of some formal parameter 4.

Note that in A-functions and type generators of more than one argument a
free variable in the type of one argument may be bound as another argument.
For example consider the type generator GREATER-OR-EQUAL-To defined in
the external language as follows.

(DEFTYPE (GREATER-OR-EQUAL-TO (X (IN-USET P)) (P POSET))
(LAMBDA ((Y (IN-USET P)))

(OR (- Y X)
(IS Y (GREATER-THAN X P)))))

The type generator GREATER-OR-EQUAL-TO takes two arguments X and P
where P is a partially ordered set and X is a member of P. The above defini-

* tion introduces the symbol GREATER-OR-EQUAL-TO as an abbreviation for an
V' internal type generator of the form

(LAMBDA (x(I NUSl r pP s ) pPOSET) body)

In this expression the variable pPOSfl which appears free in the type of the
bound variable xIU-USET p POsF) is bound as the second argument and thus
does not appear free in the overall expression.

I.I
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A The definition of the free variables of an expression may seem problematic.
In particular consider an external A-expression of the form

a'
"  (LAMBDA ((X (MEMBER-OF Y)) (Y (MEMBER-OF X))) body)

According to the definition given above both occu:rences of X and Y in the
t ype expressions are bound as arguments to the A-expression. But there is a
circularity in the typing of the formal parameters; the expression takes two
arguments X and Y where X is a member of Y and Y is a member of X. It turns

out that no internal A-expression has circularities of this kind. Any attempt
to translate circular extecnal expressions into the internal language produces
an error. To see why internal A-expression a,'e non-circular we need to define
the notion of rank for internal expressions.

Definition:

* If e is an atomic expression then the rank of e is 0.

* If e is a variable xr then the rank of e is one greater than
the rank of the type r.

* If e is an extensional application

* "- (op arg1 arg2 ... argk)

then the rank of e is one greater than the maximum rank of
op and the arguments argi.

a a If e is a A-expression
''.

(LAMBDA ('l x' ... x') body)0

then the rank of e is one greater than the maximum rank of
body and variables 4T.

Lemma: All parameter lists in the internal expression are non-
* circular, i.e. for any parameter list (x'l x2 ... x) there exists

.permutation (y' y2 ... y"') of this list such that if T' ap-
pears free in the type expression rj then i must be less than j.

a -t
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Proof- Let
-'Y2 --- yk)

be a permutation of the list which sorts the parameters by rank,
i.e. if i is less than j then the rank of yT' is less than or equal
to the rank of y4j'. Now suppose that y7" appears free in rj. We

must show that in this case i is strictly less than j. It follows

from the definition of rank that if yT' appears free in ri then the

rank of r, must be greater than the rank of y'. Furthermore the
rank of y7- is one greater than the rank of r. Thus the rank of
y' must be less then the rank of y-' so i must be less than j.

If, 6.4 Translating External Expressions
742

The syntax of the external language is similar to the syntax of the internal

language except that external symbols are used rather than variables and
the syntax of A-expressions is slightly different. The definition of when a
symbol X appears free in an external expression e is directly analogous to the
corresponding definition for the internal language.

The translation of an external expression into an internal expression is
defined relative to a symbol translation table which contains entries of the
form

where X is an external symbol and e is an internal expression. Each context
in the Ontic system is associated wiLh a particular symbol translation table;
different translation tables are used in different contexts. If a is a type

expression in the external language then the context construction operation

(LET-BE X a)

v ,constructs a context where the symboi translation table includes the entry
.X

where x' is an internal variable of type a' where o' j- the type expression in

the internal language that corresponds to the external type expresiion a. If
-F
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t is a term in the external language then the context constructor

(LET-BE X t)

yields a -ontext where the symbol translation table contains the entry

X -*

where t' is the internal term coriesponding to the external term t. The same
symbol can be used in different ways in different contexts.

Now consider an external A-expression of the form

en (LAMBDA (CX r)) body)

To translate this expression relative to a given translation map p the system
first translates the external type expression r to an internal expression r'. If

,,. there is some free symbol in r which is not mapped by p then the translation
of r fails. The system then chooses an internal variable Zr' such that x*' does

"-' not appear in p, i.e. x" does not appear free in any term t which is the right
hand side of a mapping Y '-4 t in the table p. The system then translates

body relative to the table p[Xi-4 Zr] which is the table identical to p except
that it maps X to r'. Let body' be the result of translating body relative to
this modified table. The overall translation process then yields the internal
A-expression

(LAMBDA (Zr') body')

The general translation process can be precisely defined by a simple case
analysis on the syntax of external expressions.

"-,'. Definition: If e is an external expression and p is a symbol

translation table then the translation Trans(e, p) of the expres-
sion e with respect to the table p is defined as follows:

e If e is an atomic expression then Trans(e, p) equals e.
* If e is an external symbol then Trans(e, p) equals p(e).

0.-

N * If e is an application

(op arg arg2 ... argi)

r ,-A
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then Trans(e, p) equals

(Trans(op, p) Trans(ar, p) Trans(arg2 , p) ... Trans(argk, p))

* If e is a lambda expression of the form

(LAMBDA ((X r1 ) ... (Xk rk) ) body)

then let p' be

INewMap(p, ((X r1 ) ... (X TO)))

where the function NewAlap is defined below. The transla-
tion Trans(e, p) is then defined to be

(LAMBDA (p'(X1) ... p'(Xk)) Trans(body, p'))

Let arglist be an argument list of the form ((XI ri) ... (Xk r))
and let p be a symbol translation table. If aralist is empty then
the translation table NetcMap(p, arglist) equals the table p. If
arglist is not empty then the table NewMap(p, arglist) is defined
a.s follows:

* let (Xj ri) be a pair in arlist such there is no pair (X1 r) in-
arglist such that Xj appears free in ri. If no such pair (X, ri)
exists then there is a circulaxity in the type structure of
arglist and the attempt to construct a new translation table
fails.

* Let r be Trans(ri, p) and let Zr! be the first variable of type
*, r which does not appear in p, i.e. which does not appear

free in any term t which is the right hand side of a mapping
Yi-* t in p.

,. * Let p' be the table p[Xi " x '] which is identical to p ex-

! cept that it maps X to x-1 aad let restargs be the result of
removing the pair (Xi ri) from arglist.

* NewMap(p, arglist) equals NewMap(p', restargs)

. r . . t..' -. . . C .. .. .r .. w....... ,.-.f.- .-.... ..'. XV. ,.' y . ' r"g , .. .,i .. .. ¢ ."' _." ' t vd ¢€
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Lemma: If p' is a translation table of the form

NewMap(p. ((Xj r-) ... (Xk r)))

then for any pair (Xi r,) in the given argument list p'(X,) is an
finlCrnal variable of type Trans( JI. p')

When translating A-expressions the system chooses internal variables which
replace external symbols. The internal variables of each type T are ordered
in a linear sequence xi-. x, x', etc. When the system chooses an internal
variable of type T it always chooses the first acceptable variable in this se-
quence. In this way the least possible number of distinct variables appear in
the internal expression resulting from the translation. Minimizing the num-
ber of distinct variable.s that appear in the output expression reduces the

S..size of the graph generated by the compilation process; the size of the graph
is quite sensitive to the number of distinct variables of a given type which
appear in the expressions being compiled.

6.5 Substitution

Given the notion of a free variable we can now define the notion of substi-
tution. If e is any internal expression, y' is any internal variable, and t is
any internal term, the expression e[t/y'] is the result of replacing all free
occurrences of y' in e by t with appropriate renaming of bound variables in
e. For example suppose e is a A-expression of the form

(LAMBDA ,xr x? ... xr) body)

The free variables of this expression may include free variables in the type
expressions ri and computing e[t/ya] may involve substituting into a type
T of a formal parameter. Thus if e is a lambda expression then the formal
parameters of e[t/yai may have different types than the formal parameters of
e and thus the formal parameters of e[t/y ] must be different from the formal
parameters of e. To properly define substitution for internal Ontic expres-
sions one nmust use the more general notion of a simultaneous substitution
for a set of expressions.

NO4
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Definition: A substitution w: is a finite set of mappings of the
form

where y7 is an internal variable and t is an internal term and a
* given variable has at most one mapping under w.

The expression e[t/ya] is defined to be .c(e) waere 4C is the sub-
stitution containing the single mapping y' t.

For any substitution , and any internal expression e, the expres-
sion w(e) is defined as follows:

* If w, does not contain a mapping for any free variable in e
then w(e) equals e.

* if e a variable y0 and w contains a mapping of the form
y a-* t then w(e) equals t.

* If e is an extensional application of the form

(op arg arg2 ... argk)

then w(e) equals

(w(op) w(arg1 ) w(arg2) ... w(argk))

* If e is a A-expression of the form

(LAMBDA x,' x2 ... 4'*) body)

then let freevars be the set of free variables of e then let w'
be the substitution

NewSubst(w. (' x4 .. kx), freevars)

where then function NewSubsi is defined below. In this case
W(e) equals

(LAMBDA (w'(x') w'(x 2).u'(x')) w'(body))

'X
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* Let w be a substitution, let arglist be an argument list of the form
... x) and let freevars be a set variables. If arglist is

empty then the substitution NewSubst(w, arglist, freevars) equals
the substitution wu. If arglist is not empty then

2.tP lL'Subt(.', arglist, freevars)

*: is defined as follows:

* Let x' be a member of the argument list sbch that no vari-
able 4' in the argument list appears free in r;. Such an

* argument must exist because there must be some argument
nf least rank.

I Let z-" (  be the first variable of type w(ri) such that for
every variable y' in freevars either there exists a mapping
y a- t in w and z'(-) does not occur free in t or there is no

mapping y' F t in w and z- (we) is distinct from yo. 1

" Let w' be w[x '-+ z-(T' ) ] which is identical to w except that
it maps X4. to z'(").

" Let arglist be arglist minus the argument x,4.

* Let freevarg be freevars plus the variable xT".

" NewSubst(w, arjl:st, freevars) equals

NewSubst(Lw', arglist', freevars)

Recall that for each type r the variables of type r are ordered in a lin-
ear sequence xf, xr, x-, etc. The above algorithm specifies that whenever
bound variables are renamed, and a variable of type r must be -'hosen as
a replacement for some other variable, one must take the earliest , .ssible
variable of type r. This minimize- the number of variables which ultimately
get translated into graph structure.

9
'The first condition easures that free variables introduced by w are i ot captured by the

new bound variables. The second condition ensures that members of freevars not mapped
by w are not captured by the new bound variables.

-S
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6.6 Macros

The External language includes certain macros that provide convenient ab-
oreviations. The most >mportant macros used in the external language are
EXISTS and FORALL. The external expression

(EXISTS ((X r)) ()

is an abbreviation for the external formula

(EXISTS-SOME
(LAMBDA ((x r))

4))

I. In general the quantifier EXISTS can involve more than one bound variable.
For example consider an external formula of the form

(EXISTS ((X (IN-USET P))
(P POSET))

This formula abbreviates the formula

(EXISTS ((P POSET))
(EXISTS ((X (IN-USET P)))

0,))

Which becomes

(EXISTS-SOME
(LAMBDA ((P POSET))

* (EXISTS-SOME
(LAMBDA ((X (IN-USET P)))

In general the formula

(EXISTS ((XI r1 ) ... (Xk rk)) 4)

Abbreviates the formula

V.

k-.
'-
U'

I*I I I I I~V~ t ~ t . u / .f - . .. . . / *I.. ... P I.... i ... " .....



6.6. MACROS 19.5

* (EXISTS ((X, -)
(EXISTS ((X1 r)

(Xi- 1 ri- 1)< (Xi+1 7i+l)

(Xk Tk))

)

Where no Xj appears free in r. This requirement insures that none of the
bound symbols X1 appear free in the overall expression. If every ri has a free
occurrences of some Xj then the macro expansion fails.

The macro FORALL is defined in terms of EXISTS. More specifically

F (FORALL ( (XI TO).. (Xk TO)) 40.4

abbreviates

(NOT (EXISTS ((Xi r) ... (Xk rk)) (NOT 4)))

The following list shows some additional macros where er and each -ri are
external type expressions, t and u are external terms f is an external function
expression of one argument, each Xj is an external symbol and Y and Z are
external symbols distinct from all Xi and which do not appear free in t, u, f,
a or any ;r.

Macro Expression Expansion

1(AND-TYPE r1 r2) (LAMBDA ((Y rj))

(IS Y 2))

0. V.VVZz e .4



196 CHAPTER 6. THE OX'NT]C LANGUAGE

(WRITABLE-AS t (RANGE-TYPE

(X1 TOi (LAMBDA ((Xi 71)

(Xk rk)) (Xk 7k))

0)

(WRITABLE-AS (WRITABLE-AS Y
(X, 1  (X1 TO)

(Xk rk)) (Xk TOk
(Y 0,))

(AT-MOST-ONE a,) (FORALL ((Y ou)

(Z 0,)
(=Z Y))

(EXACTLY-ONE a) (AND (EXISTS-SOME o,)
(AT-MOST-ONE aT))

(APPLY-RULE t u) ((THE-FUNCTION 0) u)

In addition to the macros specified above the external language allows

some simple syntactic abbreviations involving operators and macros which
take a single type as an argument. More specifically the expression

(THE-SET--OF-ALL ( (X T))')

abbreviates
(THE-SET-OF-ALL (LAMBDA ((X ') )

Similarly(THE ( (X r)) '

abbreviates
(THE (LAMBDA ((X r)) 4)

The operators AT-MOST-ONE, EXACTLY-ONE and THE-RULE allow for similar
abbreviations.
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The macros EXISTS and FORALL also allow abbreviated type expressions in
the list of bound variables. For example the expression

(FORALL ((X r b)) TP)

.: says that 'V holds for every X of type r such that C This formula abbreviates
(FORALL ((X a)) T) where a is the type (LAMBDA ((X r)) (D).

6.7 Definitions

Of course the external Ontic language allows for user specified definitions. A
definition is an expression of the form

st (DEFINE symbol e)

where symbol is an external symbol and e is any external expression. A

definition of this form alters the base level symbol translation table so that
symbol gets translated as the expression e' where e' is the internal translation
of e.

Definitions can be made more concise with the macros DEFTYPE and
DEFTERM'. For example the definition

(DEFTYPE symbol r)

is the same as
(DEFINE symbol r)

but the definition

4; (DEFTYPE (symbol (Xi 71) ... (Xk rk))

is an abbreviation for the definition

(DEFINE symbol
(LAMBDA ((X ri) ... (Xk rk))

.X..........
0'0
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Similarly the definition

(DEFTERM symbol u)

is the same as
(DEFINE symbol u)

However, the definition

(DEFTERM (symbol (Xj ri) ... (Xk rk))

U)

is an abbreviation for the definition

(DEFINE symbol
(LAMBDA ((X1 TI) ... (Xk T))

u))

6.8 Summary

The external Ontic language has now been entirely defined; all of the language
constructs that appear as primitives in the proof given in the appendix have
been described in this chapter. A procedure has been given for translating
expressions in the external language into an internal language where there is
a one to one correspondence between the nodes in the graph generated by the
Ontic compiler and expressions in the internal language. The structure of the
internal language has been discussed in detail, including the notion of free
variables and a procedure for performing variable substitutions on internal
expressions. The next section shows how a set Z of internal Ontic expressions
can be converted to an Ontic graph G(E). Ontic graphs are simpler than
Ontic expressions; while there are twenty three kinds of Ontic expressions,
the Ontic graphs defined in chapter 5 have only five kinds of nodes and nine
kinds of links.

0 N
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'..Chapter 7

~The Ontic Compiler

: The Ontic system compiles a set E of Ontic expressions into an Ontic graph

'-' G(S). The graph structure is much simpler than the Ontic language. The

,, node and link types of Ontic graphs do not provide the distinguished prim-

itive ty T ,s THIN, SET, RULE or SYMBOL. Ontic graphs make no distinction

U =,.between syntactically small and syntactically large types. The node and link

.' ' types of Ontic graphs do not provide set construction operations or definite

-:,:.:.;descriptions. Ontic graphs have no explicit provisions for defining new func-

:':" " tions or type generators or for reify functions as terms. However, in spite of

.- the relative simplicity of Ontic graphs, it is possible to comnpile internal Ontic

~expressions into Ontic graphs in a way that implements all the features of

the Ontic language.

' A 7.1 An Overview of Compilation

r The Ontic compiler takes a set E of internial Ontic expressions and generates

. an Ontic graph G(E). Each node in the graph G(E) corresponds to some

particular expression in the internal Ontic language, athough the expression
I O.,represented by a node in G(E) need not be a member of E. The notation

C(E) will be used to denote the set of expressions that correspond to the

• nodes in G(E). In order to precisely define the set C(E) each internal Ontic

- . 199
t..
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expression e will be associated with a set Aux(e) of internal Ontic expressions
called the auxiliary expressions for e. The function Aux is defined on a case by
case bases in later sections. The set C(E) is defined relative to the mapping
Aux as follows:

Definition: The auxiliary closure C(E) of a set of expressions E
is the least set of expressions such that

* If an extensional application (op arg, arg2 ... argk) is in
C(E) then op and each argi are in C(E).

If a A-expression (LA'MXBDA (xr 4 .. , x') body) is in C(sE)

then body and each x is in C(E).
* e If a variable x' is in C(E) then r is in C(E).

* If e is in C(E) then C(E) contains Aux(e).

e Let a be a A-type of the form (LAMBDA (z) lt(xr)) and let
y7 be a variable of type r. If both a and y are in C(E) then
C(E) also contains the formula

(FF (Is y' a) 4(y'))

where i(y2) is the result of replacing all free occurrences of
Z' in , with y" as discussed in chapter 6.

There is a direct one-to-one correspondence between the expressions in
C(E) and the nodes in the Ontic graph G(E); If e is in C(E) then the

.9 node represented by e is written as n.. Recall that the nodes in an Ontic
graph come in five types: formula nodes, quotation nodes, variable nodes,
type nodes, and unclassified nodes. The nodes in the Ontic graph G(E)
that correspond to Ontic formulas, quotation expressions, Ontic variables,
and types expressions, are classified in the obvious way. The nodes corre-
sponding to all other expressions are unclassified. Note that if an extensional

* application (op arg, arg2 ... argk) is in C(E) then C(s) also contains the
operator op. This implies that C(E) contains "expressions" such as IMPLIES
and EXISTS-SOME which are not technically Ontic expressions. Thus the

4.'
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graph G(E) contains unclassified nodes that correspond to operators such as
IMPLIES and EXISTS-SOME.

Just as the set C(E) is defined relative to an auxiliary mapping Aux, the
links in the graph G(E) are defined relative to a meaning postulate mapping
.-. More specifically each expression e in the internal Ontic language is asso-
ciated with a set AI(e) of meaning postulates where each meaning postulate
in 11(e) is a clause link

where each Ti is a literal involving a node n, where s is either the expression
e, a subexpression of e or a member of Auxe). The mapping M which assigns
every expression a set of meaning postulates is defined on a case by case basis

S' in later sections. Recall that Ontic graphs have nine kinds of links: clause
links, equality links, subexpression links, free variable links, type declarat.on
links, type formula links, subtype links, existence links, and closure links.
The complete Ontic graph G(E) is defined relative to the meaning postulate
map M as follows:

" The nodes of G(E) consist of all nodes of the form n, where e is an
expression in C(E).

* The clauses in G(E) are given as follows:

- G(E) includes all clauses in M(e) for e in C(E).

- If a is the A-type (LAMBDA (xr) *(xr)) and y'r is a variable of
type r and both a and y7 are in C(E) then G(E) includes the~clause
clasen(ISTS-sOR 

r) V n(zn (1s Y" ) O(yr))

where $(yr) is the result of replacing all free occurrences of x"
in Z with yr as discussed in chapter 6. The significance of such
clauses is discussed below.

* The equality links in G(E) consist of

- All links of the form

n(Is t, (EQUAL-TO t2)) t* nt, 12

V
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where the formula (IS t1 (EQUAL-TO t2)) is in C(E).

-. - All links of the form

n(IFF p q r=, -- n.

a where the formula (1FF p q) is n C(S).

- All links of the form

n(= e 2 )) 4n =e 2

where the formula (= el e2)) is in C().

* The subexpression links in G(E) consist of all links of the form

(n 0, na,11 n47 , - . nn,,) = n(op -9 -1 ..- ,,sk)

* where the extensional application (op arg1 arg2 ... argk) is in C(E).

* The free variable links in G(E) consist of all links of the form

Sr' << n,

where e is an expression in C(E) such that x' appears free in e.

-. * The type declaration links in G(S) consist of all links of the form

where z' is in C(E).

* The type formula links in G(E) consist of al links of the form

nl( 1 3 u r) 0* nu:n,

where the formula (IS u r) is member of C(E).

* The subtype links in G(S) consist of all links of the form

'(Ts-mKLy a -r) * 7 a  -'< 7-lr

where the formula (IS-EVERY r r) is a member of C(E).

I
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* The existence formula links in G(E) consist of all links of the form

-Akt r 3

where the formula. (EXISTS-SOME r) is a member of C(E).

* The closure links in G(E) consist of all links of the form

L Anyr.nD(y,) m: nTIMBDI C') ,O( ,))

where (LAMBDA (xT ) *t(x T )) is a A-type in C(E), yr is a variable of
type r in C(S) such that yr does not appear free in (LAMBDA (x)
0(xr)) and 4)(y') is the result of replacing all free occurrences of x in

N-.

The complete specification of the set C(E) and the graph G(E) depends

". on a specification of the mappings Aux and M which give the Auxiliary
-- expressions and the meaning postulates respectively that are associated with

any given expression. The mappings Aux and M are defined on a case by case
basis in the iollowing sections. The significance of each meaning postulate is
also discussed.

7.2 A-Types and Variables

A.,

A-types and variables are of central importance in the Ontic system; all
quantification involves the interaction of A-types and variables. The graph

-A G(E) contains meaning postulates for individual A-types, meaning postulates
S3 for individual variables, and clauses which are generated by a combination
'.. of a A-type and a variable.

The meaning postulates for individual A-types and variables are fairly
simple. If a is the A-type (LAMBDA (x') C then a is a subtype of r; every

0 instance of a is an instance of r. Thus a has the auxiliary expression

(IS-EVEY a r)

.,PI

0:..

S.t

¢ %.,f~..4t. t wwg' t';.v4ZeVC **b.~~&b~~JA4rtpc2;I



'.

204 CHtAPTER 7,. THE ONTIC CO0.IPILER

The meaning postulates for 7 include a clause that contains only the node

for the above subtype expression. This clause ensures that the node for
the subtype expression is true in any consistent normalized labeling. The
auxiliary expressions for the A-type a also include (EXISTS-SOME fl) and
(EXISTS-SOME r) and the meaning postulates for a include the clause

7(EIIS .- SDRE o) V n(EISTS-SOEE T)

This clause states that if there exists an instance of a then there exists an
instance of r. While this last clause is semantically redundant it forces certain
inferences which would not be performed otherwise.

There are also meaning postulates for A-types which allow congruence clo-
sure to operate on A-types. In fact every A-expression in the Ontic language
has an auxiliary combinatcr expression. More specifally there is a func-
tion Comb-Trans which converts A-expressions into combinator form. For
any A-expression e the combinator expression Comb-Trans(e) is an auxiliary
expression of e. The meaning postulates for e include the clause containing

." the single node
fn(. e Comb-Truins(e))

This clause ensures that n, is equivalent to nCoam.Trai,(e).

-. Combinator expressions allow congruence closure to act on A-expressions.
-S. For example consider the two lambda types

(LAMBDA (W') (IS u (RELATED-TO zT)))

(LAMBDA (x') (IS w (RELATED-TO xl)))

-S. where u and w are terms which do not contain x' as a free variable. If botti
of the above expressions are in C(E) and if a particular labeling C of G(E)

makes the node for u equivalent to the node for w, then C will equate the
nodes for these two A-expressions, Note that if x7 appears free in either u or
v then this congruence inference is not valid.

notCombinator conversion algorithms are discussed in [Turner 791 and will
-0 not be described here. Combinator expressions are used solely for congruence

closure on A-expressions; combinator expressions have no auxiliary expres-
sions or meaning postulates. However combinator expressions are extensional

"., applications and therefore generate subexpression links.

NNN
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Each individual variable also has some auxiliary expressions and a mean-
ing postulate. If XT is a variable of type r then the auxiliary expressions for
xr consist of the formulas (EXISTS-SOME T) and (IS x -r). The meaning
postulates for x" consists of the the single clause

" (EXISTS-SOME r) V n (I S r r)

This ciause says that if there exists an, instance of the type r then x' is
an instance of r. This clause ensures that in any consistent normalized
labeling, if the node nu(EIsrs-sOM ) is labeled true then the type node n, is
an established type node for the variable node n,,.

In addition to the auxiliary expressions and meaning postulates for in-
dividual A-types and variables there are expressions and clauses which are

o generated by a combination of a A-type and a variable. Suppose that C(E)

_ includes both a A-type (LAMBDA (x') 4(x)) a variable y" of type r. Let
a be the lambda type (LAMBDA (Wr) t(Xr)). Under these conditions C(E)
includes the formulas

(EXISTS-SOME 7)

and
(TFF (IS yT a) k))

where 4D(y') is the result of substituting y' for all free occurrences of x" in 4
as discussed in chapter 6. Furthermore the graph G(E) includes the clause

,n (KITSS-SOuK r) V n (I (Is i u) *(y 7 ))

This clause says that, as long as there exist instances of the type '-, the
formula (IS y' a) is equivalent to t(y'). This equivalence can be viewed

-" as a definition of the type a.' More specifically, suppose that the system is
@ focusing on a term u of type T and the system is to determine if u is of type

a (which is a more specific type than r). The above equivalence says that u
is of type a just in case the formula 1'(u) is true. For simplicity suppose that
the formulas (IS u a) and t(u) have been compiled, i.e. that they are both
in C(E). Since u is of type r the system can generate the binding y' " u.

0But if yT and u are equivalent then by congruence closure the formula (IS y'

1Actually the equivalence provides only a partial definition; it does not state the addi-
tional condition that a is a subtype of r.

% %-
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206 CHAPTER T. THE ONTIC COMPILER

a) is equivalent to the formula (IS u a') and 4I(y') is equivalent to ID(u).
% Thus the binding

-y 4 U

together with the truth of the equivalence

(FF (IS y7 cr) )

causes the formula (IS u a) to be equivalent to 4(u).

In the presence of the binding y' i-+ u the equivalence

(IFF (IS y' a) O(y'))

can be used to determine if u is of type a even when the formulas (IS u a)
and 4 (u) have not been compiled, i.e. are not in C(E). In the presence of the

*binding y' u the semantic modulation inference mechanisms ensure that
the nodes n, and nu are virtually indistinguishable and that the formulas
(IS y' or) and 'I(y') behave exactly as the formulas (IS u a) and 6(u)
would behave if they were compiled.

In general there can be more than one variable of type r. The definition
of a is stated in terms of each variable of type -. This helps to ensure the
homogeneity of the generated graph: different variables nodes with the same
type are identical in that they carry exactly the same information.

7.3 Meaning Postulates with Quantifiers

If the lemma library contains a formula of the form (FORALL (x') t(x'))
then for each variable y' of type r the compilation process should generate
the formula t(y') which is the result of replacing all free occurrences of XT in
1- with y'. In this way the compiler should ensure that all information known
to hold of the type r is copied for each variable of type r and any binding of
the form y' -# u causes the term u to inherit information known to hold of

* 2Because combinator expressions ensure that congruence closure is operates on A-
expressions the binding y' '-- u causes t(y') to be equivalent to 1(u) even in the case
wheie y' appears free inside A-expressions contained in 4k(y'),

A%
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the type r. The formula (FORALL (x') 4(xr)) is actually an abbreviation
for

(NOT
(EXISTS-SOME

(LAMBDA (Wr)
(NOT 4(xr)))))

If the above formula is true the system should ensure that the formula
4D(yT) is true. This is done via a meaning postulate for type assertion for-

mulas. More specifically the meaning postulates for a type assertion formula
(IS u a) consist of the single clause

-n (Is u a,) V (E1ZSTS-SONE a)

_ This clause states that if u is an instance of type r then there exist instances

of type r. The clause also states the equally important condition that if
there are no instances of a then u is not an instance of a. In particular, if
there are no instances of a then y' is not an instance of a. Given the above
meaning postulate for type assertion formulas and the meaning postulates

9 discussed in the previous section, one can prove an important lemma about
quantification in the Ontic system.

Leuma: If the formule (FORALL (Zr) t(x) ) is in C(S) and_..- . y7 is a rariable of type r in C(E) then C(S) also includes jI(yT).
Furthermore if C is a consistent normalized labeling of G(S) such
that C assigns the label true to the nodes for (EXISTS-SOME -r)

-7 and (FORALL (x) (@(xr)) then C also assigns the label true to
'-. the node for 4)(yr).

V. Proof: C(E) includes the formula

(NOT
, v (EXISTS-SOME

(LAMBDA (Zr)
(NOT (

VVt%
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208 CHAPTER 7. THE ONTIC COMPILER

A Let a be the A-type

(LAMBDA (Z) (NOT 4(xr)))

Since both a and yr are in C(E) the equivalence

(IFF (IS yr a) (NOT D(yT)))

must also be in C(E) and thus the formula 4(yr) is in C(E). Fur-
thermore the formula (IS y' r) is in C(E) and so G(2) includes
the clause

sn(Is yr a) V n(lISTS-SONE a)

Now if C assigns the ahove universal formula the label true it

must assign the node for (EXISTS-SOME a) the label false. Thus
the node for (IS y" a) must also be assigned false. Furthermore
G(E) contains the clause

-,nl(n1ST--SOU r) V nl(1 7 (IS yT a) (NOT f(ly)))

Since £ assigns the the node for (EXISTS-SOME -r) the label true,
£ must also assign the label true to the node for

(IFF (IS yt a) (NOT 4b(yr)))

But since the node for (IS yr a) is assigned false, the node for
(NOT 4(y')) must also be assigned false. But this implies that
the node for 4(y") is assigned true.

The expression
(FORALL (x' x" ... x) 4D)1 2 k

is an abbreviation for nested universal quantification as described in chap-
ter 6. The above lemma for a single universal quantifier immediately general-
izes to multiple universal quantification; a universal formula which quantifiez
over several variables will be instantiated with all variables of the appropriate
type.

.. "...-.'..
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7.3. MEANING POSTULATES WITH QUANTIFIERS 209

Several kinds of Ontic expressions have meaning postulates that involve
quantification. For example let f be a A-function or non-primitive type
generator of the form

(LAMBDA (' x2 ... x') body)

The A-expression f has the single auxiliary expression
S(FORALL (x' x'r . xr

k )

" =(f X'I X ... X')

body))

K0 The meaning postulates for f consist of a single singleton clause which states
'at, . that the above formula is true. This formula serves as the definition for

,K the operator f. In order for this definition to be invoked on an expres-
sion (f u1 u2 ... Uk) variables of the appropriate type must be bound

_ to the arguments u1 u2 ... uk. Once this has been done the application
(f u1 U2 ... uk) will be equivalent to an appropriate substitution instance
of body. However in order to get variables of the proper type bound to the
arguments one must focus on the arguments. Thus in order to invoke the def-
inition of an operator f in an application (f u- tU2 ... uk) one must focus
on all the arguments ui.

Semantically, the type generator EITHER could be defined as

(LAMBDA (xTt311 y TRfG)

(LAMBDA (z rT 1 a )
?. (OR (- jz:::muGT )

( zT1 yT1I10))))

Note however that if EITHER where simply an abbreviation for the above
expression then types of the form (EITHER u w) would not be syntactically

'small. Furthermore, and more seriously, invoking the above definition in
a particular application requires focusing on the arguments to the operator
EITHER. The usefulness of the operator EITHER is greatly improved by making
EITHER a primitive type generator and constructing meaning postulates for
every type of the form (EITHER u w).

Let a be a type expression of the form (EITHER u w). The type a has
the auxiliary expressions

0.4
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210 CHAPTER 7. THE ON TIC COMPILER

(Is u a)

(I S W a)

(FORALL (x')

(OR (= X7 U)

The meaning postulates for a consist of three singleton clauses which state
that each of the above formulas is true.

Let a be a type expression of the form (OR-TYPE ri r2). The type a has
the auxiliary expressions

4 (IS-EVERY ri a.)

(IS-EVERY r2 a)

(FORALL (W0 )
(OR (IS x' ri)_ 5 (IS X' 7'2M

The meaning postulates for a consist of three singleton clauses which state

that each of the above formulas is true.

Let f be a A-function of the form
(LAMBDA (x" x' ... x" ') body)

and let a be the type expression (RANGE-TYPE f). The type expression a
has two auxiliary formulas:

(FORALL (x4 x" ... xk)

(is body o))

(FORALL (y)
(EXISTS (x z2 ... xi)

(= y0' body)))

The meaning postulates for a consist of two singleton clauses which assert
that the above formulas are true. These formulas constitute a definition of

S, the type a.

4f-t Let u be the term (THE r) where r is any type expression. The term u has
-.k

.4*
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7.4. REIFICATION EXPRESSIONS 211

the auxiliary expressions

- (EXACTLY-ONE r)

(IS u r)

bV (FORALL (x') (= x' ))

where these expressions abbreviate internal Ontic expressions as described
in chapter 6. The term u has meaning postulates

-n(KIXcTLy-On r) V Tn(1s u r)

-n(zAcTLY-aou r) V n(FO.aL (Zr) (- '" a))

* These meaning postulate states that if there is exactly one object of type r
I: then u is of type -r and everything of type r is equal to u.

S7.4 Reification Expressions

The Ontic system can only focus on terms; in order to focus on types,
functions, or type generators the system must first coerce these objects
to terms. The process of coercing a higher order object to a first order
term is called reification. The Ontic language has two reification operators:
THE-SET-OF-ALL which coerces a type to a set, and THE-RULE which coerces
a function of one argument to a set of pairs. Both of these reification op-
erators can only be applied to syntactically small objects. e.g. one can not
construct a set of all sets.

Let s be an expression of the form (ThE-SET-OF-ALL r) where r is a
p4. a4 syntactically small type expression. The auxiliary expressions for a consist

p. of the formulas (IS s SET) and (- r (MEMBER-OF )) and the meaning
postulates for s consist of two singleton clauses which assert that these two
formulas are true.

Now consider the other reification operator, THE-RULE. Let f be the A-
function (LAMBDA (xr) u) where r is a syntactically small type expression

*.lh I , 10I
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and let r be the term (THE-RULE f). The term r has three auxiliary expres-
sions:

(IS r RULE)

( (THE-FUNCTION r) f)

(= (RULE-DOMAIN r) (THE-SET-OF-ALL 7))

The meaning postulates for r consist of three singleton clauses which state
that each of the the auxiliary formulas must be true.

The meaning postulates for expressions of the form (THE-RULE f) do
not force this expression to denote a set of pairs; the meaning postulates do
not force any particular implementation of a rule in terms of sets. However
the meaning postulates are sufficient to recover all of the information in the
rule; if r is the expression (THE-RULE f) then one can construct the set of
pairs corresponding to r from the function (THE-FUNCTION r) and the set
(RULE-DOMAIN r).

7.5 Miscellaneous Meaning Postulates

Let u be the term (IF 0 w, w2). The auxiliary expressions for u consist
of the equalities (- u wl) and (- u W2 ). The meaning postulates for u
consist of the following two clauses

,'I
oQ -,n4 V n(- u wl)

no V n(. u u)

These two clauses state that if 4D is true then u equals w, and if 4? is false
then u equals W2.

Let u be the quotation (QUOTE symbol). The node nu is a quotation
node and any labcling which equates distinct quotation nodes is taken to
be explicitly contradictory. The auxiliary expressions for u consist of the
single formula (IS u SYMBOL) and the meaning postulates for u consist of a
singleton clause which states that this formula is true.

44
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The meaning postulates for expressions of the form (THE-SET-OF-ALL r)
and (THE-RULE f) provide meanings for the types SET and RULE; every reified
predicate is a set and every reified function is a rule. Furthermore the type
SYMBOL is defined by the meaning postulates for quotations. The type THING
is t'he universal type and the type expression THING has the following auxiliary
expressions

(IS-EVERY SET THING)

(FORALL (xsET)

(IS-EVERY (MEMBER-OF xs ) THING))

. (IS-EVERY RULE THING)

(IS-EVERY SYMBOL THING)

*_ The meaning postulates for the type THING consist of three singleton clauses
"-. which state that each of the above formulas is true.

The type generator EQUAL-TO has the following auxiliary expression.

(= EQUAL-TO
(LAMBDA (x " ")

(EITHER xTt 1 XT uu)))

,- The eneaning postulates for EQUAL-TO consist of a single clause which states

that the above formula is true. EQUAL-TO has been listed as a primitive type
generator because formulas of the form

(IS u (EQUAL-TO w))

generate equality links; these equality links would not be generated if EQUAL-TO

* was defined rather than taken as a primitive.

The type generator SUBSET-OF has the following auxiliary expression.

(- SUBSET-OF

(LAMBDA (Wr)
(LAMBDA (ySE)

(IS-EVERY (MEMBER-OF ySET)

(MEMBER-OF z s3E)))))

V%
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214 CHAPTER 7. THE ONTIC COMPILER

The meaning postulates for SUBSET-OF consist of a single clause which states
that the above equivalence is true. SUBSET-OF has been listed as a primitive
type generator because it is syntactically small; the equivalent A-expression
given above is not syntactically small.

-- The type generator RULE-BETWEEN has the following auxiliary expression.

(= RULE-BETWEEN
(LAMBDA (xsgT ySET)

(LAMBDA (z tR'L)
(AND (-. (RULE-DOMAIN z'uL)

(FORALL (w(M1n2
- F XSET)

(IS ((THE-FUNCTION z&=l)

4. ( l-OF =SET))
,=.1. (MEMBER-OF ysT)))))))

The meaning postulates for RULE-BTWEEN consist of a single clause which
states that the above equivalence is true. RULE-BETWEEN has been listed as
a primitive type generator because it is syntactically small; the equivalent
A-expression given above is not syntactically small.

The meaning postulates for Boolean connectives are given in table 4.1 in
chapterconst-prop-chap.

7.6 Summary

The Ontic compiler converts a set E of expressions in the Ontic Language
to an Ontic graph G(E). There is a one to one correspondence between the
nodes in G(E) and a set C(E) of Ontic expressions where C(E) contains
E as a subset. The compilaton process is specified in terms of meaning
postulates which are defined on a case by case basis for the various kinds of

Ontic expressions.

The compilation process is incremental; if ' is an incremental extension
of Z then G(V') can be constructed as an incremental extension of G(E).

4%
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When a new expression is typed to the top level Ontic interpreter new graph

$ structure is incrementally added to represent that expression. Wben the
system focuses on a term u of type ', it is sometimes necessary to create a

railnew variable of type ir to bind to iu. When a new variable is created newv
.:.:;rt- graph structure is automatically, constructed to represent that variable.

SA
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Chapter 8

*Some Potential Applications

. There are two ways of evaluating the ideas used in the Ontic system. First,
V one can attempt to evaluate the utility of the ideas in constructing useful

. systems. Second, one can attempt to evaluate the extent to which Ontic's
inference mechanisms provide a plausible model of human mathematical cog-
nition. This chapter addresses the first evaluation technique by presenting

t. a list of potential applications of automated inference systems. The appli-
cations on this list represent directions for future research; the limitations
of Ontic's object oriented inference techniques in these applications are not

% currently understood, and future research may uncover other inference tech-
niques which make these applications practical.

One potential application for automated inference systems is simply the
verification of mathematical arguments; an author could increase his con-

fidence in the correctness of a proof using machine verification. The time
* required to "debug" the formal representation of proofs in the Ontic system

seems to make this application impractical at the current time. However,
as the inference power of the system is increased, and the lemma library is

a? made larger, the system may approach the point where machine verification
of new mathematics is practical.

Automated inference mechanisms are needed in the construction of in-
teractive knowledge bases. The Ontic system is able to automatically use

- .217
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information from a lemma library. An Ontic system based on a lemma li-
.9 brary that contained the contents of a mathematical textbook could answer

certain questions about the contents of that book. Such an interactive text-
'-" book might be valuable in education. If the system could be made to run

with a very large lemma library, a library containing the contents of many
textbooks, one could construct an interactive mathematical encyclopedia.
An interactive encyclopedia could be used by professional mathematicians to
answer questions and verify arguments in domains that were not familiar to
the human user.

Automated inference systems might also be useful in constructing inter-
active documentation systems. A computer operating system, for example, is

usually associated with a large amount of documentation. It may be possible
to translate this documentation into first order axioms that can serve as a

* emma library underlying an inference system. One would then have a de-
vice for answering questions about the documented system. The problem of
answering questions about engineered devices seems similar to, but possibly
more difficult than, the problem of answering questions about the material
in a mathematical textbook.

Ontic's object oriented inference mechanism may be useful for program
verification. Ontic's type system is similar to the type systems of strongly
typed programming languages. With sufficiently expressive types there is no

distinction between type checking and verification; any verification problem
for a computer program can be phrased as a type-checking problem. Ontic's
object-oriented inference mechanisms are organized around types. It would
be interesting to explore the application of Ontic's object-oriented inference
mechanisms to program verification where verification is viewed as a form of
type-checking.

Another possible application for Ontic's object-oriented inference mech-
anisms is common sense reasoning. In his naive physics manifesto Hayes
proposed writing down first order axioms which express common sense knowl-
edge about the physical world [Hayes 85]. One might object to Hayes' pro-
posal on the grounds that first order inference is intractable. It is clear,

* however, that certain limited inferences can be done quickly. It would be
interesting to explore the application of Ontic's inference mechanisms to rea-

Cs.-.
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8.1. INTERACTIVE KNOWLEDGE BASES 219

soning about common sense situations. Another objection to Haves' proposal
is that much, if not most, common sense reasoning is heuristic: the conclu-
sions are not strictly implied by the given information. The final section of
this chapter suggests a way in which Ontic's object oriented inference mech-
anisms could be extended to perform certain forms of heuristic reasoning.

8.1 Interactive Knowledge Bases

Ontic's object-oriented inference mechanisms are designed to automatically
access a large lemma library. By placing various kinds of information in the
knowledge base underlying an Ontic-like system one could construct inter-

0 active mathematical textbooks, interactive mathematical encyclopedias, and
interactive technical documentation libraries.

Access to information in Ontic's lemma library is controlled via types:
the inference mechanism accesses only those portions of the lemma library
that concern types which apply to the given focus objects. For example,
when reasoning about graphs the system automatically ignores facts about
differentiable manifolds. Thus the lemma library could include information
about a large number of different subjects and still be used effectively.

There are several ways one could use an interactive mathematical ency-
clopedia. First, the encyclopedia could be used to answer questions about

'C areas of mathematics that are unfamiliar to the user. Second, the encyclo-
pedia could verify a user's argument. This would be especially useful when

the human user is unfamiliar with the subject matter of his own argument.
* Finally, a mathematician who develops a new concept could ask the system

if that concept has already been defined under somae other name.

Recognizing user-defined concepts is particularly difficult; there may be
a defined concept in the encyclopedia which is "essentially the same" as a
user-defined concept but the two definitions are technically different. For

. example, consider the concept of an equivalence relation. An equivalence
relation can be defined as a relation, i.e. a set of pairs, which is symmetric,
transitive, and reflexive. Alternatively, an equivalence relation can be defined

0l.
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A. as a partition of a set into equivalence classes. These two definitions seem
to define the same concept and yet the two classes are technically disjoint: a

t partition is different from a set of pairs. It turns out that one can define a
very general notion of iso-onticity under which equivalence relations (as sets

' of pairs) are iso-ontic to partitions [McAllester 83]. There are many other
examples of iso-onticities between classes. For example a function f of two
arguments defines a Curried function f' such that for for all arguments x and
y, the application f'(z) yields a function such that

f(x, y) = f'(x)(y)

The function f is iso-ontic to its curried version f'. As another example
consider a graph. A graph can be defined in two ways: a graph can be

tdefined as a set of nodes together with a set of arcs where each arc is a set of
* two nodes. Alternatively, a graph could be defined as a set of nodes together

with a symmetric anti-reflexive binary relation on those nodes. A relation,
i.e. a set of pairs, is different from a set of arcs, i.e. a set of sets. A set of
two-elements sets, however, is iso-ontic to a symmetric anti-reflexive binary
relation. There are many examples of iso-onticities in mathematics. Ideally
an interactive encyclopedia would recognize when a user-defined concept is
iso-ontic to a concept that already exists in the encyclopedia.

8.2 Software Verification

Type checking has proved to be a practical way .4 finding certain errors in
.3; computer programs. Currently available type checking systetr use a weak

vocabulary of types - there is no way to treat an arbitrary predicate as a

* data type. If the type vocabulary is made richer then stronger "semantic"
properties of programs can be expressed as type constraints. In fact, if any
predicate on data structures can be expressed as a type then any semantic
specification for a computer program can be expressed as type restrictions.
For example, if iteration is replaced by recursion then a programmer can
provide loop invariants simply by placing type restrictions on the arguments

of recursive functions.

If arbitrary predicates on data structures can be expressed as types then
4J e. .
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*--t type checking requires theorem proving. One might argue that, because the-

A orem proving is intractable, one should not use fully expressive type systems.
This criticism carries little weight. however. if one is willing to allow type
checking to fail. A failure to type check simply means that the system failed
to prove the program correct: it does not mean that the program is wrong.

A Since Ontic's object-oriented theorem proving mechanisms are guaranteed to
terminate quickly, a type checking system based on Ontic's theorem prov-
ing mechanisms could also be made to terminate quickly. Programs which
fail to type check are classified as "not obviously correct". Since the On-

. tic's inference mechanisms can automatically use a large lemma library, the
power of a type checker based on Ontic could always be increased by adding
more lemmas. Such lemmas could either be proved from first principles or

W. simply added as axioms. Adding lemmas should cause more programs to be
classified as obviously correct.

A- Type checking has already been demonstrated to be practical for certain
restricted type vocabularies. It seems likely that type :hecking using more

"" expressive types would be equally practical in the sense that all types which
ar(! checked by existing systems could still be checked in the more general
setting. A system with fully expressive types could gradually be extended
to incorporate more powerful inference techniques under the constraint that
type checking terminates quickly.

8.3 Common Sense and Default Reasoning

Hayes has proposed using first order logic as a language for representing
_ •common sense knowledge about the physical world [Hayes 85]. One possible
J. objection to first order logic as a representation language is that theorem

N proving is intractable. It would be interesting to see if Ontic's object or:
ented theorem proving mechanisms could be used to answer common sense

4questions about the physical world using a formal fact library.

Another objection to first order logic as a knowledge representation lan-
guage is that common sense reasoning is often heuristic: heuristic reasoning
produces conclusions which are likely, but not necessarily true. This observa-

N -
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tion has lead to the development of default logics and semantic network for-
malisins that allow the cancellation of inheritance links (Fahlman 79] [Ether-
ington & Reiter 83]. It seems likely that Ontic's object oriented inference
mechanisms could be extended to handle certain kinds of heuristic inference.
Ontic's inference mechanisms are organized around types. It seems plausible
that heuristic knowledge could also be organized around types. More specif-
ically one could introduce the quantifier FORMOST which is analogous to the
quantifier FORALL. One could then write axioms such as the following

(FORMOST ((X BIRD)) (IS X FLYING-ANIMAL))

One can assign truth values to FORMOST formulas by associating each type
with a probability distribution over instances of that type. In general, a
formula of the form

(FORMOST ((x r)) D(x))

is true just in case the fraction of instances of type r which satisfy D(x)
is above some threshold a. If the threshold a is large, say 95%, then a
reasoning system might perform heuristic inferences by treating FORMOST the
same way it treats FORALL: given that most birds fly, and Tweety is a bird,
the system would "deduce" that Tweety flies. The facts that Tweety is a
bird and that most birds fly do not imply that Tweety flies, or even that
it is likely that tweety flies, whatever that means. People, however, will
naturally conclude that Tweety probably flies. Thus heuristic inference is
not semantically sound. However, unsound heuristic inference seems to be
useful.

The following example indicates that inclusion relationships between types

play an important role in human heuristic reasoning. I will use the expression

(ARE-MOST r o)

as an abbreviation for

(FORMOST ((x r)) (IS x a))

The following "inheritance network" concerning molluscs is adapted from
(Etherington & Reiter 83].

(ARE-MOST MOLLUSC SHELL-BEARER)
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(IS-EVERY CEPHALOPOD MOLLUSC)

(ARE-MOST CEPHALOPOD (NOT-TYPE SHELL-BEARER))

(IS-EVERY NAUTILUS CEPHALOPOD)

(IS-EVERY NAUTILUS SHELL-BEARER)

Given the above information together with the statement that Squirmy
is a mollusc one would naturally conclude that Squirmy is probably a shell-
bearer. If one is then told that Squirmy is a cephalopod one would conclude
that Squirmy is probably not a shell-bearer. Note that in this second case
there is a conflict between two FORMOST assertions that apply to Squirmy:
most molluscs have shells but most cephalopods do not have shells. In this
case the known inclusion relationship between the types CEPHALOPOD and
MOLLUSC seems to resolve the conflict. Finally, if one is told that Squirmy is
a nautilus one would in fact know, according to the above information, that
Squirmy is a shell bearer.

If a reasoning system treats FOruOST assertions in the same way that
P.it treats FORALL assertions it will perform unsound inferences. In particu-

lar, each universal instantiation of a FORMOST assertion is unsound- If some
unsound FORMOST instantiation produces a conclusion which conflicts with
known information then that unsound instantiation inference should be re-
tracted. Furthermore, if two unsound instantiations of FORMOST assertions are
mutually contradictory, and there is an inclusion relation between the types
quantified over in the two FORMOST assertions, then the FORMOST assertion
with the more specific type should dominate and the unsound instantiation
of the other FORMOST assertion should be retracted. More research is needed
to determine if these guidelines lead to an efficient and useful heuristic rea-
soning system.
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Chapter 9

A Summary of Ontic

The Ontic system has the following features:

* The Ontic formal language is organized around a rich vocabulary of
types.

-- There are many different ways of constructing type expressions.
Any predicate of one argument is a type. Type generators can be
applied to arguments to yield types. There are special constructs
such as WRITABLE-AS for constructing types from terms. Types

A can be combined with Boolean combinators to yield other types.

- There are many different ways of using types. Types are used as
"dv: predicates in formulas of the form (IS x r). Types restrict the

range of quantifiers. A type can be used to construct a term via
0_ the operator THE. A type can be used to construct a set via the

operator ThE-SET-OF-ALL. Types can be directly related via the

combinator IS-EVERY.

- Types play a central role in Ontic's object-oriented inference mech-
anisms.

. * Most of the axioms of Zermelo Fraenkel set theory are incorporated into
the syntactic definition of a small type expression and a small function

.422
K. 225
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expression; type and function expressions which are syntactically small
can be reified via the operators THE-SET-OF-ALL and THE-RULE respec-
tively.

* Many modern theorem provers are based on some kind of backward
chaining rewrite mechanism guided by a notion of simplification. On-
tic is based on a forward chaining mechanism guided by a notion of
focus. Ontic's forward chaining inference process is restricted to for-
mulas which are about a given set of focus objects.

e Ontic automatically finds and applies information from a large lemma
library. The Ontic system classifies each focus object by findings types
that are true of that object. If a focus object x is classified as being
an instance of type r then the system automatically applies knowledge
about the type r to the focus object x.

* Ontic's inference mechanisms are implemented as labeling operations
on a graph structure. The graph structure represents a compiled version
of the lemma library and is analogous to a semantic network, The graph
labeling process implements a virtual copy mechanism whereby a focus
object becomes a virtual copy of a generic individual.

* Ontic performs automatic universal generalization as part of its for-
ward chaining inference process. In universal generalization the generic
individuals in Ontic's graph structure are analogous to the Skolem con-
stants introduced in a resolution theorem prover by a universally quan-
tified goal formula. At other times the same generic individuals are used
as universal variables which get instantiated with (bound to) focus ob-
jects. At still other times generic individuals act as Skolem constants
introduced by existential premises. The types associated with generic
individuals are central to the automatic universal generalization mech-
anism: the types determine the range of applicability of the derived
universal statement.

It is not clear which of the above features are most responsible for the
power of the Ontic system. Some features are orthogonal to others. For
example, the reification operations THE-SET-OF-ALL and THE-RULE could be
removed from the system: no other feature of the system depends on the

4,
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reification operators. Similarly, the universal generalization mechanism could
be removed without effecting any other mechanism. Other features are less
modular.

It would probably be possible to find some object-oriented forward chain-
ing inference mechanism that does not use graph-labeling. Such a mecha-
nism would be restricted so that variables are only instantiated with focus
objects. Implementing congruence closure and automatic universal general-

ization, however, might be difficult in a system that was based on formula
manipulation rather than graph labeling.

not On the other hand, one can image a graph-labeling inference mechanism
not guided by focus objects. In ,uch a system bindings for generic individuals
would be generated in some other way. Early versions of the Ontic system
used graph-labeling inference mechanisms, including a virtual copy mecha-
nism based on binding generic individuals, but did not use focus objects to
guide the binding process. These early versions of the system did not per-

' form well. User-specified focus objects seem to be central to the operation
of Ontic.

All of the features of the Ontic system utilize types. In addition to provid-
ing concise and natural formulas, types are central to accessing information
in the lemma library, binding generic individuals, automatic universal gen-
eralization, and reification. It is difficult to imagine any version of the Ontic
system not organized around types.

Knowledge representation and automated inference may ultimately have
a profound effect on our society. Interactive encyclopedias may some day be

able to answer questions about a large fraction of human knowledge. Such
encyclopedias would make all current forms of publication obsolete. Thus,

• however the future judges the ideas presented here, I hope that research in
inference and knowledge representation will continue.
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Appendix A

The Stone Representation
JTheorem

This appendix contains a complete listing of a mathematical development
which starts with a foundational system equivalent to ZFC set theory and

ends with a proof of the Stone representation theorem. The listing contains
.II three types of information: the definitions of all non-primitive terms used in

the development, the lemmas proven, and the machine verified proof of each
lemma. Definitions appear centered on the page while lemmas are shown in
a left hand column next to their proofs which appear in a right hand column.
The "proofs" are actually recorded histories of interactions with the Ontic
interpreter.

The listing is cumulative; at each point in the listing the system has access
to all definitions and lemmas presented earlier in the listing. At any given
point in the listing the definitions and lemmas given prior to that point are
stored in a fact library that is accessed automatically by the system. At
the end of the listing the accumulated fact library contains 509 facts: 154
definitions and 355 lemmas.

* •The listing is divided into sections each of which begins with an English
description of the contents of that section. The first four sections introduce
basic notions from set theory such as singleton and doubleton sets, unions

229
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Section Number of Facts

Fundamentals 95
Pairs, Rules and Structures 39
Maps 75
Relations, Choice and Relation Structures 45
Partial Orders and Zorn's Lemma 68
Lattices 48
Bounded, Distributive, and Complemented Lattices 40
Sublattices 3

Lattice Morphisms 25
Filters and Ultrafilters 18
The Stone Representation Theorem 21

Total 509

Table A.i: The number of facts in each section

and intersections, pairs, relations, structures, and function3. These first four

sections contain 254 facts; roughly half the total. The remaining sections
develop facts about partial orders, lattices, filters in lattices, and the Stone
representation theorem. Table A.1 shows the number of facts in each section.

A
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A.1 Fundamentals

This section contains basic facts about sets. More specifically this section
contains:

* A proof of the existence and uniqueness of the empty set.

* Facts about inserting objects into sets.

* Facts about singleton and doubleton sets.
b

e a A version of Russel's paradox that proves that for every set there exists
4something not in that set.

* Facts about families of sets.

* Facts about unions and intersections of sets.

* Facts about removing objects from sets.

* Facts about power sets.

We begin with the empty set:

(DE:TYPE EMPTY-SET
(LAMBDA ((5 SET))

(NOT
(EXISTS-SOME
(NMENER-OF 9)))))

(LEMMA (EXISTS-SOME EPTY-SET)) (IN-CONTEXT
((PUSH-GOAL (EXISTS-SOME EMPTY-SK))

(LET-HE S SET)
- (LET-BE S2
1%," (TSE-SET-OF-AILL (I (MEMBER-OF S))

(NOT (= I I)))))
(NOTE-GOAL))

I
(LEMA (IT-MOST-ONE EPTY-SET)) (I-CorITElT

S ((LET-BE 51 EMPTY-SET)
-'; (LET-BE 32 EMPTY-SET))

(NOTE (AT-HOST-OSE EMPTY-SET)))

:0

0
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'DEFTERMER-EMPTY-SET

(IRHE EhPnY-sET

(LEMMA (IN-COllTnT
(NOT ((ET-BE S THE-EMPTY-SET))

(EXISTS-SOME (NOTE
* (MEMBER-OF THE-EMPTY-SET))) (NOT

'4 (EXISTS-SuME
(MEMBER-OF THE-EMPTY-SET)))))

(DEFTERM (INSERT (I T81NG) (S SET)
(THE-SET-OF-ALL
(OR-TYPE (EQUAL-TO V

(MEMBER-OF )

(LEM (IN-coSTn?
(FONALL ((Y THING) ((ET-BE Y THING)

(S SET)) (LET-BE I THING)
(IS (INSERT Y S) (LET-BE S SET)C *SET)) (LIT-SE IY (INSERT Y S))

(LET-BE flY (INSERT I ZY))

(LEMPMA (NOTE (is IT SET)
(FOAuLt HING11) (NOTE (IS IlT SET)

(Y THING) (IN-COVT
(S ((L)ET-BE 1I (INSERT I S))(IS (INSERT I (INSERT Y M) (LET-BE IYX (INSEaRT Y IM)

SET)) (PaSt-oAL (_ ItT lYE)))

(LEKIIA((PUSH-GoAL (IS ItT (SUBSET-OF IYV)))

(FORALL ((Y THING) CIN-CONI=TlT)

(I THING) (INGOT-E Z(1EBOFI
Cs urn)

((INSERT I (INSERT Y C)) ((PUSH-ooAL (IS Z (MEMERL-OF lYEM))
(INSERT T (INSERT I SO)) (IN-CONT

((SUPPOSE (a z IM)
(NOTE-GOAL))

((SUPPOSE (a Z 1))

(NOTE-GOAL))

(NOTE~IE-GO fl

(NOTE-GOAL))
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(LEM (IN-CONTEIT
(FORILL ((S SET ((LET-BE S SET

(EXISTS-SOME (EISTS-SOME (MEMBER-OF S)))
a (MEMBER-OF 5))) (LET-BE S2 (SUBSET-OF S))

UI (PMMER-OF S)) (LET-BE X (MEMBER-OF S))
(S2 (SUBSET-OF S) (LET-BE S12 (INSERT I S2))

(IS (INSERT I S2) (FUSH-GOAL (IS S12 (SUBSET-OF S))))
(SUBSET-OF S)) (IN-CONTEXT

((LET-BE Y (MEMBER-OF S12)))

(IN-CONTEXT
((PUSH-cOLL (IS Y (NEMBER-OF S))))

(IN-CONTEXT
((SUPPOSE (IS Y (MEMBER-OF 32))))

(DOTE-GOAL))

(10TE-GOAL))
(NaTE-GOAL) )

(LEMMA (IN-CONTEXT
(FORL. ((I THING) (S SET)) ((LET-BE I THING)

(a (INSERT I S) (LET-BE S SET)

* (INSERT I (LET-BE 92 (INSERT X S))
(INSERT I S))))) (LET-BE 53 (INSERT x 52))

(PUSH-GOAL 0- S2 93)))
(IN-CONTEXT

((PUSH-GOAL (IS S3 (SUBSET-OF S2)))
(LET-BE T (MEMBEM-OF 53)))

(IN-CONTEXT
((PUSE-GOAL (IS Y (MEMBER-OF S2)))

(IN-CONTEXT
((SUPPOSE (- y I)))

(NOTE-GOAL))
(NOTE-GOAL))

(NOTE-GOAL))
(IOTE-GOAL))

The EFNOTATION construct allows the user to define macros. The fol-
lowing form defines the operator MAKE-SET so that (MAKE-SET X) abbrevi-
ates (INSERT X THE-EMPTY-SET) and (MAKE-SET Xl X2 ... XN) abbreviates
(INSERT Xl (MAKE-SET X2.. .XN)).

(DEFNOTATION (MARE-SET blEST ELEMENTS)
*- (IF (NULL ELEMENTS)

*- A 'THE-EMPTY-SET
'(INSERT *(CAR ELEMENTS)(MAE-SET ,e(CDR ELEMENTS)))))

4-,
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(LOMA(IN-CONTEIT
(FORALL ((LIG) ET-flI! HIG

t(IS (KRE-SET ) EM(LET-BE 9TEE-EMPTY-SET)
t (NOTE (IS (INSERT I E) SET))

(NO)TE (IS I (MEMER-OF (INSERT I E)
(LEMMA (IN-CONTEXT

*(FORALL ((I THING)) ((ET-BE YV (MEMBER-OF (INSERT IEM
(IS I (MEMBER-OF (MAKE-SET I)))) (NOTE (n I Y))))

(LEMMA
(FORAL.

((I THING)
(YV (MEMER-OF (MAKE-SET X)

(I YM)

- (DEFTYPE SINGLETON-SET
iv(nFITSLE-AS (MAKE-SET 1)

(I THING))

(LEMMA (FOLALL ((S SIN$LETON-SET)) (IN-CONTEXT
'AS (IS S SET)) ((ET-BK Si SINGLETON-SET)

(URITE-AS Si (MAKE-SET 1)
'V (I TUHa)))

N'. (LEMMtA CHORALT ((Si SINGLETO-SET)) (NOTE (IS SI SET)
(EXISTS-SOME (MEMER-OF SIM)) (NOTE (EXISTS-SOME (MEMBER-CF SI))

(II-CONTEXT
((ET-SE 'Vi (MEMER-OF Si))

(LEMMA (703*11 ((Si SINGLETON-SET) (LET-BE T2 (MEMER-OF SIM)
(AT-MOST-CUE (MEMBER-OF SIM)) (NOTE (Ar-MOST-OnE (MEMBER-OF SI)))

(LEMMA(1-0S T
(FORALL ((S SET) ((ET-BE S SET)

->(EXACTLY-ONE (MEMBER-OF S)) (SUPPOSE (EXACTLY-OwE (MMER-OF 5))
CS (LET-BE TIE-MENDER

(MAKE-SET (TIE (MEMER-OF 5))
34(THE (MEMER-OF S))))))) (LET-BE S2 (MAZE-SnT IDE-MEMBER))

(NOTE (- S 32))

(NOTE (IS S SIGLETON-SET)
N' (LEMMA

A (FOUILL M( SET))
(x> (EXACTLY-ONE (?MEBE-OF 5))

(IS S SINGLETO-SET))))

2t
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(L A (IN-CONTEXT
*(FORII.. (UI THING) ((LEr-Bg X THING)

(Y TING)) (LET-BE Y THING)
(IS (RAKE-SET I Y) (LET-BE SY ( KE-SET Y))

SET))) (LET-BE SIT (INSERT I SY)))
(NOTE (Is SIY SET))
(1OTE (IS I (REMBER-OF SXY)))

(LEMMA (IN-CONTEIT

(FORALL ((Y THING) ((LET-BE Z (mEIBER-OF SXY)))
( THING)) (NOTE (OR (- Z 1)

(IS A (HEMBER-OF (MAKE-SET I Y))))) cm Z Y)))))

(LEMMA&
(FORALL ((I THING)

(Y THING)

(Z (MRBER-OF
(RAZE-SET I Y))))

(OR( Z )
(- Y ))))

(LEMIMA (IN-CONTEXT
(FORALL M( TIEIN) ((ET-BE I THING)

(I THING)) (LET-BE Y THING)
(- (MAKE-SET I Y) (LET-BE E THE-EHPT-SET))

* - (MAKE-SET Y )))) (NOTE (- (RAKE-SEIT I Y)
(RAZE-SET Y 1),J)

(LEMMA (I-coNTEXT
(FORLL (MT THIIG) ((LET-BE I THING)

UI TIEING) (LET-BE Y THING)
(U THIlG)) (LET-BE Z THING)

* " ( M (AKE-SET X T Z) (POSI-Oo,
(RARE-SET Y I Z)))) ( (AZE-SET I Y Z)

(RAZE-SET Y X Z))))
(II-COTEXT

((LET-BK S (ZrE-SET Z)))
(NOTE-GOAL))

(DEFTYPE (NOT-EQUAL-TO (I THING))
S(LABDA M) THING))

(NOT C- I Y))))

04
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(LEMI RutsseflIa Paradox:
(FOaALL ((S sEM) (1-CONTEXT

(EXISTS MC THING)) ((ET-BE S SET)

(NOT (IS X (MMIEI-OF S)))) (SUPPOSE

(Is I (MEMBER-oF S)
(LET-BE S2

(THE-SE-T-OF-ALLL-
(X (REMER-OF 3)) .

* (NOT (IS I (MEMER-OF I))))
* (XX-CONTEXT

((SUPPOSE (IS $2 (MEMER-OF JM))
(1oTE-CO ThADICT ION))6

(VOTE-CONTRLICTIO)

CLF.K& (1N-COTTEXT
(FORAL. MC THING)) ((ET-BE I THING)

*(EIIATS-SOXE (NOT-EQULL-TO IM)) (LET-BE SI (PRASE-sET 1)) %1
* (LET-BE T THING

(NOT (IS Y (MENDER-OF SI)))))
(NOTE (EXISTS-SOKE (NOT-EQUAL-TO I)

(DEFTPE DUi4LETOX-SEI
(WRITABLE-AS (M&KE-9S7T I Y)

(Y (NOT-EQUAL-TL I))

(LEMK (ExISTS-SM DOULETO-S~r)) (I3-COITIIT
((ET-BE I THING) _

(LET-BE Y (NOT-EQUAL-TO M))
(NOTE (EMISrS-Saaz DItDULETON-SLT)))

Al
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(DEFTYPE (OTRIf-REMMf (S SET) (U (RAE-OF S))
(LID-TYPE (WE)ISES-OF S) (NOT-EQUaL-,ia W)

(LEMMA& (I-CONTEXT
(FORALL ((S DOUBLETU-SET)) ((LET-BE S DOUBLETON-SE-)

(IS S SET)) (nRrs-1s S (MIKE-SET I Y
(I THING)

(LEMMIA
* (FORALL ((S DOUBLETUN-SET)) (NOTE (IS S SET))

(NOT (IS S SINGLETON-SET))) (NOTE (NOT (IS S SINGLETON-S3ET)))

(NOTE (EXISTS-SOME (ME-OF S))
"LEHR&A

(FOILLLL C(S DOUBLETOV-SET); (15-CONTE2T
(EjEISTS-SOME (MERBER-OF S))) ((ET-BE Z (MENBER-OF S))

(IN-C3IEXT
((PUSH-GOAL

j(LEMM (XSO-SM
(FaUlll ((S DOUBLETOL-SET) (017nr-OEl M

(Z (MEPIBER-OF S)) OMXKML ))
(EXISTS-SOME (OTHER-MNME S Z)))) (IN-CONTEST

((SUrPPOSE C-z W))

(VOT-GUAL))
(LEMMA (NOTE-GOAL))

(FOLLLL ((S DOUBLETON-SET)
(Z (MEMBER-Ox S))) (IN-COITErr

(AT-MOST-ONE COTHER-MEMBER 5 Z))) ((PUSS-GOAL
(AT-ROST-OSE (uTIER-M]ERBEI S Z))

(LIT-BE vi (OTRU-MEEK 3 W)
(LEMMA UME -BE W2 (OTMB-NMEE 3 Z))

(FORATL ((S DOUBLETON-SET)
CZ (MMER-OF 5)) (IN-CONTEXT

(-S C(SUPP*33E C_ z M)
(RAZE-SET(N.0L)

z
(TEE (OTMEREEXRS Z)))))

((Pusi-GOAL

(a-S
* (MrK-SET

z
(TAX (OTHER-MEMBER S Z))))))

(IN-CONTEXT
((SUPPOSE (a X Z))

* (NOTE-GoAL))
(NOTE-GOAL.)

(LEMMA ICOM
(FOR.LL ((S SINGLETUN-SET)) ((ET-BE S SINGLETON-SET)

(NOT (IS 5 DOUWMETO-SET)))) (LET-BE I (TIE (MEMBER-OF )
(NOTE (NOT (IS 3 DOUBLETO-SET)
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(DEFTYFF CSIDE-ONYAINI!G (S SETN))
(LED-TYA (CSUPSET )(NTEUL-OS)

(LED-TYP (EBSEn-F ))) -EULTOS)

(DETTAYPE (3UP-ESE-OF (S SET))
(lAMgBDA ((I2 TN))
(IT IS I MEMB-OF S))))

COEFTYPE (I'IOPR-sET-v(SE)

(LAMTBDA (PSOPET-USE-F(SS)
(AND-TP SSETEM-OF )(O-EM LTo8)

(D~~fLET-B (ETRMBRO (SE-E SET))
(NOTT (EIIS-OM IROn-EgEOF 5))))

(LAMBDAE (CX-MPYSBSTO THING))PY-ST

*(AN-TYPE 30SEMTSETFS 0EKTST)

(LMA(FRL (ADA((S SET) ) (3COTX

'S (LMMA(EXSTSSM NON-SEMT-SETS)) (I-CNETT-E3ST
(S3 (SUBSET-OF(3LMT-BE S2 TSUSETG)

(19 3 (UBSE-OFSM)(LET-BE S3 (RAZE-ETO 5)

(OE(EISTS-SOE (MENERT-f)

(DLFTYPE (NE-RP-SUET-O SINET-E)
(ADTP (SUBS01E-F5NEPTY-SET))

(52SEE-O 5))HE-O F) ET-n ST
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(LEMMI (FoRtLL ((Si SET)) (IN-CONTEXT
A(IS (INSERT Si TEE-EMPTY-SET) ((LET-BE Si SET))

FAMILY-OF-SETS))) (IN-CONTEXT

((LET-BE F; (MIKE-SET S))
(LET-BE S (MEMBER-OF Fl)))(LEMMA (EXISTS-SOME FAMIL9 -OF-SRTS)) (NOTE (IS Fl FAMILY-OF-SETS))

(NOTE (EXISTS-SOME FAMILY-OF-SETS))))

, (LEMMA (IN-CONTEXT
(FORALL ((S SET) ((LET-BE S SET)

(Fl FIRILY-OF-SETS)) (LET-BE Fl FAMILY-OF-SETS)

(IS (INSERT S FI) (LET-BE F2 (INSERT S Fl))
FAMILY-OF-SETS))) (PUSR-GOAL (IS F2 FAMILY-OF-SETS)))

(IN-CONTEXT
((LET-BE FMEX (MENBER-OF F2)))

(IN-CONTEXT
((PUSH-OOLL (IS FlEX SET)))

(IN-CONTEXT

((SUPPOSE (. FME s)))
(NOTE-GOL))

(NOTE-GOAL))
(NOTE-GOAL)))

(LEMMA Il-CONTEXT
(FORALL ((32 S'T) ((LET-BE S1 ST)

(S3 SET)) (LET-BE S2 SET)
(IS (MAKE-SET 52 53) (LET-BE S3 SET))

FAMILY-OF-SETS))) (IN-CoNTExT

((LET-BE Ft (MAKE-SET S3))
(LEMA (LET-BE F2 (MAKE-SET S2 53))
(FRoAaL ((Sl SET) (LET-BE F3 (MAKE-SET S1 S2 S3)))

(82 SET) (NOTE (IS F2 FAMILY-OF-SETS))
:S3 SETI) (NOTE (IS F3 FAMILY-OF-SETS))))

(IS (MAE-SET SI $2 3)
FAMILY-OF-SETS)))

(LEMMA (IN-CONTEXT
(FORALL (US NO-EMPTY-SET) ((LET-Bs S f03-ERPTY-SET)

(U (MEMBER-OF s)) (LEr-BE I (MEMBER-OF S))
(Y (MEMBER-OF S))) (LET-BE Y (MEMBER-OF 9))(Is (MAKE-SET I Y) (LET-BE SXY (MAIKE-SET I Y))(SUBSET-OF S)))) (PUSH-GOAL (IS SIT (SUBSET-OF S))))

(IN-CONTEXT

((LET-BE Z (MEMBER-OF SlY)))
(IN-COITEIT

((PUSH-GaLt (IS Z (MEMBER-OF 5))))
(IN-CONTEXT

((SUPPOSE (a Z 1)))
(NOTE-GOAL))

(NOTE-GOAL,)

(NOTE-GOAL)))

.'9
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(LEMMA (11-GONTER M OEPT4

(U (RENDER-OF W) (LET-BE I (MEKBER-OF 9))
(Y (MEMBER-OF S)) (LET-BE Y (MEMBER-OF 5))

(IS (RARE-SET I Y Z) (LET-BE 52 (MAKE-SET I Y Z))
(SUBSET-OF 5))) (PUSH-GOAL (IS 82 (SUBSET-OF 8)

(IN-CONTEXT
((ET-BE S3 (MIKE-SET Y 2))

(ROTE-GOAL))

(DEFTYPE (MEMBER-OF-MEMBER (F FAILY-OF-SeYS))
(URITABLE-AS Z

(Z (MEKBER-OF Y))
(Y (MEMBER-OF F))))

(DEFTERM FMILY-UNIOI (F FAM(ILY-OF-SETS))
(THE-SET-OF-ALL (REMBER-OF-MAER F))

(LEMMA (I-CONTEXT
(FOflAi.. ((F FAMILY-OF-SETS)) ((ET-BE F FAMILY-GF-SETSJ
(IS (FAMILY-UEION F) SET)) (LET-BE 111101-F (FAMILT-UUION F))

(LEM (VOTE (IS UNION-F SET))
(FORALL ((F FiNILY-OF-SETS)

(S (KERBER-OF F)) (I1-COITEZT

(IS S (SUBSET-OF ((ET-BE S (RENSER-OF F)

(FAMILY-UNION F))) (PUfl-GOAL (IS S (SUBSET-OF 111101-F))))
(LEMMA(IN-CONTEXT

(LELM(MFMIYOFSES ((SUPPOSE (EXISTS-SOME (MEMBER-OF 5))
GTORLL (F LNIL-CFSM)(LET-BK I (MEMBER-OF S)))

(S SET (NOTE-OAL))
UIS-VERY (NOTE-GOAL))

(MMBR-OF F)
(SUBSET-OF S))) (IN-CoNT

(IS (FAMILY-UION F) ((LET-BE S SET
(SUBSET-OF 5))) (IS-EVERY (EEI-OF F) (SUBSET-OF 5))

(PUSH-GOAL (IS UNION-P (SUBSET-Of )
(IN-COMTIT

((SUPPOSE
(EIISTS-SONE (EERER-OF UNION-F))

(LET-BK I (RERBER-OF UNIO-F)
* (LET-BE 52 (MEMBER-OF F)
*1 (IS I (RINSER-OF 82)

(NOTE-GOAL)

(ROTH-Ga%
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Ms(DEnIEM (UNION (Si SET) (52 SnT))
-~ (FANILT-UIION (HIKE-SET St 52)))

(LEMMA (IN-CONTETT ((ET-BK Si SET)
(FORLLL ((Si SET) (LET-BE S2 SET)

(S2 SET)) (LET-BE F (Hits-SnT S1 52))
(IS (UN1101 51 S2) SET)) (LET-BE usnT (UN1101 51 S2)))

(NOTE (IS USET SET))

* - (NOTE (IS SI (sUBSET-OF 11557)))
(LEMMA

N ~~(FoRALL ((52 SET) (NOTX

V (St SET)) ((ET-BE USET2

(IS si (THE-sn-OF-ALL
(SUBSET-OF (UNION St 92))))) (01-TYPE (MEMBER-OF SO)

(MEMBER-OF S2))))
N (PUSH-COLL (- USE? 115572)))

(LEMMA(fCUTX
I. '~~(Frnfln ((Si SnT) (32 SnT))(I-NTT-, ~ra~a.((P1153-GOAL (IS USE? (SUBSET-OF 11552))))

((UNION 51 52) (IN-CONTEXT
(TIE-SnT-OF-ALL ((SUPPOSE
(OR-TYPE (MEMBER-OF Si) (EXISTS-SOME (MEMBER-OF USE?))

(HEMER-O 52)))))(LET-BE I (MMER-OF USE?))

(LET-BE 53 (HEMDER-OF F)
(15 1 (MEMBER-OF 33)

(11-CONTEXT
((PUSH-GOAL (IS I (MEMBER-OF USET2))))

(IN-CONTEXT

((SUPPOSE (- 53 SIM)

(NOTE-OAL))
(NOTE-GOAL))

N (NOTE-GOAL))
(NOnE-GOAL))

(WPUSN-GOou (IS USET2 (SUBSET-OF USEM)))
(IN-CONTEXT

((SUPPOSE
(EXISTS-SOME (MEMBER-OF U5ET2)))

(LET-BE I (HERDER-OF USET2)))

* - * (IN-CONTEXT

((PUSH-GOAL (IS I (HERDER-OF USET)
V (IN-CONTEXT
* ((SUPPOSE (IS I (MEMBER-OF Si))))

(NOTE-GOALL))
(NonE-GOAL)

(NOTE-GOAL))
(NOTE-GOAL)

(IE-GOAL)))

eM.y"~e .
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(IN-CONTEXT
((L6T-BE Sl SET)

(LET-BE S2 SET)
(LEMMALL(5 (LET-BE F (MAZE-SET Si S2))

(OA (52l SET) (LET-BE USET (UNION Sl S2))
(32 SENTY (LET-BE S3 (AND-TYPE (SUPERSET-OF SI)

(3(SU-TPESTO i (SUPERSET-OF S2)))
(SUPERSET-OF 32)) (rUss-GOAL

(IS 3 (UPERET-F S2)))(IS S3 (SUPERSET-OF (FiMILY-UYIOB F)))))

(SUPERSET-OF (UNION 51 S2))))) (IN-CONTEXT
((ET-BE S4 (MERBER-OF F)

(IN-CONTEXT
((PUSH-GOIL (IS S4 (SUBSET-OF S3))))

(U1-CONTEXT
((SUPPOSE (- S4 SIM)

(NOTE-GOAL))
(NOTE-GOAL))

(NOTE-GOAL)))

(DEFTER! (FAMILY-INTERSECTION (F FAMILY-OF-SETS))
4 (TIE-SET-OP-ALL UI (MEMBER-OF-MEMBER F)

(IS-EVERY (MEMBER-OF F) (SET-CONTAINING I)

(LEMMA (IN-CONTEXT
(FORALL (( FAMILY-OF-SETS)) ((ET-BE F FAMILY-OF-SETS)

(I FML-INTERSECTION F) SET)) (E-BE INTERSECTION-F
(FMILY-INTERSECTION F))

(LEMMA (NOTE (IS INTERSECTION-F SET)
(FORALL ((F FAMILY-OF-SETS) (IN-CONTEXT

(S (MEMER-OF F)) ((ET-BE S (MERBER-OF F)

(SUPERSET-OF (5SE-o LOTF NEECI1- )
* (~~~~FAJIILY-INEUSCTION M))) 15 SUEIE-F NERETINF)

((SUPPOSE
(EXISTS-SOME

(LEKKA(MEMBEK-OF INTERSECTION-F))
(FORAILL ((F FAILY-OF-SETS) (LET-BE X (MEMBER-OF ITERSECTION-F))

(S SET (NOTE-GOAL)
(FOR ALL (NOTE-OAL))

(MEM2 (MEMBER-OF F))
(13 MEM2 (IN-CONTEXT

(SUPERSET-OF W))M (LET-BE S SET
(IS (FAMILY-INTERSECTION F) (IS-EVERY (MEMBER-OF F)

(SUPERSET-OF 5))) (SUPERLSET-OF 5))
(PUSE-GOAL
(IS INTERSECTION-P (3UPEPISET-OF )

(IN-CONTEXT
((SUPPOSE (EXISTS-SOME (MEMBER-OF 5))
(LET-BE I (MEMBER-OF S))

* (LET-BE S2 (MEMBER-OF F)))
(NOTE-GOAL))

(NOTE-GOAL))

IK
551
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(DEFTERM (INTERSECTIOE (51 SET) (S2 SE))
(FAMILY-INTERSECTIOE (MAKE-SET 51 52)))

I.-

(LEMMA (I-COTEXT
(FORALL ((S SET) ((LET-BE S SET)

(52 SET)) (LET-BE S2 SET)
(IS (INTERSECTION 51 S2) SET))) (LET-BE F (MAKE-SET Si S2))

(LET-BE ISET (INTERSECTION Si 92)))

'-" (LEMMA (NOTE (IS ISET SET))

,p . (FO.AL. ((52 SET) (NOTE (IS Sl (SUPERSET-OF ISET)))

--1i (Sl SET))
(IS Si (IN-CONTEXT

(SUPERSET-OF ((LET-BE ISET2

" (INTERSECTZON Si S2))))) (THE-SET-CF-ALL
S' (AID-TYPE (MEMBER-OF Si)

• .-. (MEMBER-OF S2))))
(LEMMA (PUSz-onAL (- ISET ISET2)))
(FORALL ((SI SET) (S2 SET))

(a (INTERSECTIOI Si 52) (II-CONTEXT

(THE-SET-OF-ALL ((PUSN-OAL (IS ISET (SUBSET-OF ISET2))))

- (AND-TYPE (MEMBER-OF Si) (IN-COWTEXT

(MEMBER-OF S2)))))) ((SUPPOSE
(EXISTS-SOME (MEMBER-OF ISET)))

-, (LET-BE I (MEMBER-OF ISET)))
(NOTE-GOAL))

(NOTE-GOAL))

(IN-CONTEXT
((PUSH-GOLL (IS ISET2 (SUBSET-OF ISET))))

(IN-CONTEXT

((SUPPOSE
(EXISTS-SOnE (MEMBER-OF IsET2)))

(LET-BE I (MEMBER-OF ISET2))
, (LET-BE S3 (MEM BERt-0F FM)

(IN-CONTEXT

(OW1SJ-GOaL (Is I (MEMER-OF 53))))
(IN-CONTEXT

S((SUPPOSE (o S3 SI)))
(NOTE-GOAL))

(NOTE-GOL))
V.; (NOTE-GOW))

(NOTE-GOAL))

(NOTE-OOL)))

.. aj.

a.-.
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(LEMMA (Il-CONTEXT
(FORILL ((1 SET) (ET-BE SI SET)

(52 SET) (LET-BE 52 SET)
(S3 (AID-TYPE (LET-BE F (RAKE-SET $I 52))

(SUBSET-OF Si) (LET-BE ISET (INTERSECTION $1 S2))

(SUBSET-OF S2)))) (LET-BE S3 (AIND-TYPE (SUBSET-OF S)

(Is sa (SUBSET-OF S2)))

(SUBSET-OF (PUSH-GOAL (IS 33 (SUBSET-OF ISET))))
(INTERSECTION S1 32)))? (I-CONTEXT

((LET-BE 54 (MEMBER-OF F)))

(IS-CONTEXT
va ((PUSH-GOAL

(IS S4 (SUPERSET-OF S3))))
(IN-COITEIT

((SUPPOSE (s S4 S1)))

(IOTE-GOL))
*, (NOTE-GOAL))

(NOTE-GOAL)))

ICp p .

_'/
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(LEMMA (IN-CONTEIT
(FORAL (0S2 SET) ((ET-BE 3i SET)

%(S1 SET) (LET-BE 52 SvT)
(53 SET) (LET-BE 53 SET)

4(IN(TERSECTON SI (LET-BE U-52-53 (UNION 52 S3))
(UNION S2 93)) (LET-BE 1-91-S2 (INTERSECTION 51 92))

(UNION (TITERSECTION S1 52) (LET-BE 1-31-33 (INTERSECTION S1 53))
(INTERSECTION SI S3))))) (LZT-BE 132? (INTERSECTION SI U-S2-53))

Jb (LET-BE USET (UNION 1-51-32 I-S1-53))

(PUSH-GOAL (a ISET 0527))

(IN-CONTEXT
((PUSE-GOAL (IS 1527 (SUBSET-OF USET)

(IN-CONTEXT

((SUPPOSE
1 (EXISTS-SOME (KMR-O]F ISET))

(LET-BE X (KMNER-OF 1527))

(lu-CONTEXT
-~ ((PUSH-GOAL (IS X (RENDER-OF USET))))

(IN-CONTEXT
((SUPPOSE (IS I (MEMBER-OF 32))))

(NT-GL)
(NOTE-OAL))

(NOTE-GOL))
(OTE-GOAL))

(IN-CONTEXT
. ((PUSH-GOAL (IS 0527 (SUBSET-OF 1527)

(IF-CONTEXT

((SUPPOSE
(EXISTS-SOnE (MEMBER-OF USET))

(LET-SE I (MEMBER-OF 0527))
(IN-CONTEXT

((USH-GOAL (IS X (MNER-OF 351)

((SUPPOSE
(IS I (MEMBER-OF I-S1-32)

(NOTE-GOAL))

(NOTE-GOAL))
v.3 (NOTE-GOAL))

(NOTE-GOAL))

(NOTE-GOAL))

q_.Ir
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(LEM (12-CONTEXT
(FORALL ((S2 SET) ((LET-BE Si SET)

(Si SET) (LET-BE S2 SET)

(53 SET) (LET-BE S3 SET)

((UNION Si (LET-BE 1-S2-93 (INTERSECTION S2 S3))
(INTERSECTION S2 33)) (LET-BE 0-S1-S2 (UNION SI. 92))

(INTERSECTION (UNION SI S2) (LET-BE U-SI-S3 (UNION Si S3))

(UIOIN SI S3))))) (LET-BE USET (UNION SI I-S2-S3))
(LET-BE ISET (INTERSECTION U-Si-S2 U-Si-3)

(PUSH-GOAL (- USET ISET)))

(IN-CONTEXT (IS USET (SUBSET-OF ISET))))

(IN-CONTEXT

((SUPPOSE

(EXISTS-SONE (MEMBER-OF USET))

(LET-BE I (MEMER-OF USET))
(IN-CONTEXT

((PUJSS-GOAL (IS I (NEMBER-OF ISET))))

(IN-CONTEXT
((SUPPOSE (IS X (MEMBER-OF Si))))

(NOTE-GOAL))
(NOTE-GOAL))

(NOTE-GOAL))
(NOTE-GOL)

(IN-CONTEXT

((PUSH-GOAL (IS ISET (SUBSET-OF USET)

(IN-CONTEXT

((SUPPOSE
(EXISTS-SOME (MEMBER-OF ISET))

(LET-BE X (MBER-OF ISET))

'P ((PUS-GOAL (IS X (MER-OF VSET)

(XE-CONTEXT
((sUPPOSS (IS 1 (MEMER-OF SI)

(NOTE-GOAL)
(NOTE-GOAL)

(NOTE-GOAL')
(NOTE-GOAL))

(NOTE-GOAL)

ff rf
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(LDUU (IN-CONTEXT

(FORAI.T ((Si SET) ((ET-BE S1 SET)
(33 (SUBSET-CF SI) (LET-E 52 SET)
(52 SET)) (LET-BE S3 (SUBSET-OF SW)

.4(IS (UNION S3 92) (LET-BE tlBETi
(SUBSET-OF (UNION 31 S2))))) (UNION Si 52)

(LET-BE USET2
(UNION S3 52)

at. (PUSR-GO&L (IS USZT2 (SUBSET-OF USETI)

p (IN-CONTEXT
- ((SUPPOSE

(EXISTS-SORE (MEMBER-OF USET2))
(LET-BE I (MEMBER-OF USET2))

(IN-CONTEXT
((PUS-GOAL (IS X (MEMBER-CF USETi)))

J% UN-CONTEXT
.((SUPPOSE (IS I (MEKBER-OF 33)

(NOTE-GOAL))

(NOTE-GOAL))
(NOnE-GOAL))

(NOTE-GOAL))

(LEMMA (IN-CONTEXT
(FOLJ.I. ((SI SET) ((ET-BE Si SnT)

(53 (SUBSET-CF Si) (LET-BE 32 SET)
(S2 SET)) (LET-BE 33 (SUBSET-OF SI)

(IS (INTERSECTIO2 93 S2) (LET-BE ISETi
(SUBSET-or (INTERSECTION Si 52))

(INTERSECTION 51 32))))) (LET-BE ISET2
(INTERSECTION S3 52))

- (PUSN-GOAL (IS ISET2 (SUBSET-OF ISETI)
(INI-CONTEXT

((SUPPGSE

(EXISTS-SOME (HEMMER-OF 15ET2))
(LET-BE I (M ifER-OF ISET2)))

,ROTE-GOAL))
(NOTE-GOAL))

(LEMA (IN-CONTEXT

(FOU! ((Si SET) ((ET-BE Si SET)
(92 (SUBSET-OF SIM) (LET-BE 32 (SUBSET-O3F Si))

N (st (IN-CONTEXT

(UNION 51 32))) ((ET-BE USE?

(LEMMA (NOTE (a 5j(NONS 2

S(FOLILL ((Si SET) (NO 13))
A(S (UNION-O SIM2))

(99 SBETO2i) (IN-CONTEXTX (a 92 ((ET-BE IME
(INTERSECTION 5i 32))) (INTERSECTION SI 52)

(NOTE (a 52
* (INTERSECTION 31 32)))))
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(DEFTYPE (DISJOINT-FROM (SI Sri))
(LAMBDA. ((52 SnT))

C(INTERSECTION 51 S2)
THE-ENPY-SET)))

(LEMMA (IN-COETET ((LET-BE Si SET)
(FOXALL ((Si SET)) (LET-BE ESET TEE-EPIPTY-SET))

A(EXISTS-SOME (DISJOINT-PROM Si)))) (NOTE (EXISTS-SOIE (DISJOINT-FROM Si))))

(LEMMA (IN-CONTEXT
(FORLL. ((Si SET) (S2 SET)) ((ET-BE St SET)

N(1FF (IS Si (DISJOINT-FROM S2)) (LET-SE S2 SET)
(IS-EVERY (LET-BE INT (INTERSECTIGI Si S2))

(KEMBER-OF S0) (PUSH-GOAL
a,(NOT-RiBBER-OF 52))))) (1FF (IS St (DISJOINT-FROM S2))

(IS-EVERY (MEMBER-CF Si)

WI' (ICT-PMER-OF 52)))))

(IN-CONTEXT
((SUPPOSE (IS-EVERY (MER-OF SI)

(SOT-NENBER-OF S2))))
(IN-CONT

((SUPPOSE
CEXISYS-SORE (MEMBER-OF TIT)))

(LET-BE I (MEMER-OF tNT)))
-, (NarE-cONTRADICTION))

(NOTE-GOAL)
(IN-CONTEXT

((SUPPOSE (IS Si (DISJOINT-fROx 52))))
(IN-CONT

((PUSH-GOL
(IS-VERY (REMBER-OF Si)

(NOT-MEMBER-OF S2))))
(IN-CONTEXT

((SUPPOSE
(EXISTS-SORIE (BRIBER-OF SIM)

(LET-BK X (MEMBER-OF SIM)
(Non-GOAL))

(NaTE-GOAL))
* (NOTE-GOAL))
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(DEFTERM (SET-DIFFERENCE (Si SET) (S2 SET)
(TEE-SET-Cs-ALL

-t (AND-TYPE (REMBEI-OF SO) (NOT-MEMBER-OF 32)

(LEMMNA (IN-CONTEXT
(FOkALL ((Si SkET) (S2 SET)) ((IT-BE Si SET)

(IS (SET-DIFFERENCE S! S2) (LET-BE S2 SET)
(SUBSETr-CF SIM)) (LET-BE SD (SET-DIFFERENCE SI S2)))

(LEMMA (FaRALL ((Si SET) (S2 SET)) (iN-coNTExT
(IS (SET-DIFFERENCE Si S2) ((PUSH-GOAL (IN 5!) (SUB~bT-lF Si)))

(DSJOhUT-FROM S2)))) (IN-CONTEXT
((StrIPOSE

(LEMMIA (FOR"L ((Si SET) (S2 SE (EXISTS-SOME (a IER-OF SD)))
(a (UNION (LET-BE I (Z.UEltE-OF SD)))

9 52 S5))(NOTE-GOAL))
(SET-DIFFERENCE (NOTE32)L)

(131 1 32M (N-OTE XT

((1PUSH-GOAL
(I5 SD (DISJOINT-FROM 92)

(IN-CONTEXT
((SUPPOSE

(EXISTS-SONE (RENDER-OF SD)))
-' (LET-BE I (MEMDER-OF SD)))

(NOTE-GOAL))
(NOTE-GOAL)

.1* (IN-CONTEXT
((LET-BE USETI (UNION 32 SD))

(LET-BE USET2 (UNION S1 S2))
(PUSN-GOAL (- USETI USE2))

((PUSH-GoaL
(1S 01tr2 (SMNET-Of USETiM)

((SUPPOSE
(EXISTS-SOKK

(KEBE-OF USET2)))
(LET-2E I (NEBE-OF USET2)))

((PUSH-GOAL
(Is 1 (MEE-OF USETI)

(IN-LONTEXT
* ((SUPPOSE

(IS I (MEMBER-EJF 52)
(NOTE-GOAL))

(NOTE-GOAL))
(NOTE-GOAL))

(NOTE-GOAL))
(.NOTE-GOAL))

%
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(UEFT!ER (REMOVE UI THING) (S SE1T))
(SET-DIFFEIENCE S (MNSf-SET M))

(LEIf (tU-4t1ITU
-~ (FOR&I.L (CS SET) UI THING)) ((ET-BE I 'IXG)

((REMOVE 1 5) (LET-REK S SET)
(THEE-SIT-CF-ALL (LET-BE REX

(AND-TYPE (MEMBER-GF S) (ED I s))
(DOT-EQUAL-To X)))))) ',LET-HE S2 (MAKE-SET V)

(LET-BE Si3

(THE-SET-OF-ALL
(AID-TYPE (MEMBEIL-OF S)

(lOT-EQUAL-T3 I)
(PUSH-GOAL (a BEN S3)))

(1l-CONTEXT
N v ((PUSH-00AL (IS RER (SUBSET-OF S3))))

(is-CUITi
((SUPPOSE END-FB ))

(LKT-BK T (KENSEN-OF BEN)
(NOTE (1S T (NOT-EQUAL-TD W))
(soTI-GUAW)

(IOTE-OAL))
(IN-COVTI

((PUSH-04OAL (I3S53 (SUBSET-Of REM)
(IN-CONTEXT

-~~ ((SUPPOSE (EXISTS-SOME (EMBER-OF S3)))
(LET-BE Y (MEADER-OF S3)))

(NOTE (IS T (NoIT-MEMERL-oF
(INSERT X TUE-EMPTY-SET)

(NOTE-GOAL))
(IoTE-GOA)

(NOTE-GOL)
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(FORLL ((S SET) ((ET-BK I THING)
(I THING) (LET-BE T THING)
(1 MI~G) 3 (LET-BE S SET)

C(REMOVE Y (REMOVE I S)) (LET-BE SI (REMOVE I S))

(THE-SET-OF-ALL (LET-BE SYX (REMCYE T SID)
(AN!D-TYPE (REMBEI-OF S) (LET-BE 5T12

(NOT-EQUAL-TO 1) (THE-SET-OF-ALL
(NOT-EQUAL-TO F)))")) (AND-TTPE (MEMBE!L-OF S)

(lOT-EQUAL-TO 1)

(NOT-FQUL-i' Y))))
(PUSH-GOAL (w SF! SY12))

N1-CONTEXT
(,'PUSH-GOAL (IS SI1 (SUBSET-OV SY12M))

((SUPPOSE
(EXISTS-SOIX (MMER-OF SF!)))

(LET-BE Z (MEKBER-OF 511)))

(NOTE-GOAL))
(NOTE-GOAL))

(I-ONTEx;
((FUSE-GOAL (IS SUM (SUBSET-OF 51)

(fl-cNTEXT
((SUPPOSE

(EIISTS-SJKE (XEMB1ER-OF 3112)))
(LET-BE Z (MEBE-OF S112)))

(NOTE-GOAL))
(NOTE-GOAL))

(NOTE-GOAL))

(LEMMA (IN-CogT
(FORALL ((Y T1ING) ((LET-BE X THING)

(I THING) (LET-BE Y THING)
(S SET) (LET-BE 3 SET)

Cm (IENDOYE I CUEKOVE T S)) (LET-BE SIT (REMOV I (REME Y 5))

(RMOVE T (EMOVE I S))))) (LET-BE S11 (REMOVE Y (REMOVE I S)))
(PUSH-GOAL (- SIT 511)))

((PUSH-GOAL CIS SIT (SUBSET-OF SUI)
(IN-CONTEXT

((SUPPOSE
(EXISTS-SOME (?WBER-OF SIT)))

(LET-BE Z (EE-OF SIT)
(NOTE-GOAL))

(NOTE+GENER.AL ZE-GO I0)
(NOTE-G046L))

6 0.

wV
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N, (DEFTSRM (?OWSR-SET (S SET))
(TBE-SETn-haL (SUBSET-OF 5))

(LEMMA (11-COITEIT

(F 3RfLL (US SET)) ((ET-BE S SET)

(IS (PObta-SET S) (LET-BE P (POWER-SET SD)
FLNILY-DF-SETS)))

(IN-COUTEIT
(LEMMA ((ET-BE 52 (MEMBER-OF P))

(FORAL. 'S SET)) (NOTE (IS P FAMILY-OF-SETS))

V 1-S
(FARILY-UNION (PUWVER-SET S))))) (IN-CONTEXT

((ET-BE S2
(FIMILY-UNIOl (POWER-SET )

(NOTE C- (FAMILY-I~lN (POWER-SET 5))))))

4
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A.2 Pairs, Rules and Structures

This section contains facts about pairs rules and structures. For any two
things x and y the pair < , y > is implemented as the set f{, Ix, y 11. A
rule is a set of pairs. An objects which appears on the right side a pair in a
rule r is called a domain element of r. The set of all domain elements of r
is called the rule domain of the rule r (rule domains are different from map
domains; map domains are discussed below).

A structure is a rule whose domain is a set of symbols. Ontic structures
are similar to the "structures" or "records" used in computer programming
langauges (e.g. structures defined via DEFSTRUCT in Common Lisp). The
symbols in the domain of a structure rule are somntimes called the "slots"
of the structure. From a mathematical pcint of view the most interesting
structures have a U-SET slot which contains the "domain" or "underlying
set" of the structure. A structure with a U-SET slot that contains a set is
called a set structure. Many different kinds of mathemnatical objects can be
modeled as set structures; partial orders, algebras, topologies, graphs, and
differentiable manifolds c.in ail be implemented as set structures.
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1(DFTEM (MAE-PAIR (I THING) (Y THING))
(MARE-SET (MiE-SET I Y) (MAlE-SET 2))

(LEMA (IN-CO TEIT
(FO ALT ((I THING) (Y THING)) ((LET-BE I THING)

(a (FAMILY-UNION (MAKE-PAIR I Y)) (LET-BE Y THING)
(MAKE-SET I Y)))) (LET-BE SI (MAIE-SET X))

(LET-BE SKY (MAKE-SET I )
- - (LEMMA (LET-BE SPAIR (MAKE-PAIR I Y)))

(FORALL (( THING) (I THING)) (NOTE (IS (PAEILY-LION SP~in) SlY))

(* (FAMILY-INTERSECTION (NOTE (IS (FAILY-INTEIRSECTION PAi) S)))

(MAE-PAIR I Y))
4" (M IE-SET I))))

(DEFTYPE PAIR

(nRITABLE-AS (RAKE-PAIR I Y)
(I THING)

A', (Y TING)))

(DEFTER (LEFT (P PAIR))
(THE (1EMBER-OF (FARILY-INTERSECTIO1 P))))0

(LEMKMA (IN-CONTEXT
(FOLL± (( THING) (Y THING)) ((LET-BE I THING)

4" (= I (LET-BE Y THING)
(LEFT (RAKE-PAIR I Y))))) (LET-BE P (MAKE-PAIR I Y))

(LET-BE SI (FANII.Y-IITERSECTION P)

(NOTE (- I (LEFT P))))

(DEFTEHM (RIGHT (P PAIR))

*" (IF (SINGLETON-SET P)
(LEFT P)
(TIE (OTEER-MEKBEM

(FIMY-UION P)
(LEFT P)))))

(LEMMA(IN-CONTEXT
(FORALL ((I THING) ( TING)) ((LET-SE I THING)

' (m y (LET-8K Y THING)
(RIGHT (MAKE-PAIL I Y))))) (LET-HE P (MISE-PAIR I )

- (PUSH-GOAL (- Y (RIGHT P)))

(LET-as RX (RAKE-SET ))
* (LET-SE M (RAKE-SET I )))

(IN-CONTEXT

4'. ((SUPPOSE (- I Y)))
(NOTE-GOL))

(IN-CONTEXT
((SUPPOSE (NOT (m I Y))))

(NOTE (NOT (a MI MY)))

(NOTE-GOAL))
.. (NOTE-GOL,))

For efficiency the type RULE, the operators THE-RULE and THE-FUNCTION

6",'
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and the type generators DOMAIN-TYPE, and the type generator RULE-BETWEEN
are all implemented primitively. If f is a syntactically small function expres-
sion of one argument then the term (THE-RULE f) denotes a set theoretic
object. such as a set of pairs, that corrosponds to the function f. Instances of
the the type RULE are objects which can be written as (THE-RULE f) where is

9 a syntactically small function expression of one argument. If R denotes a rule
then the type (DOMAIN-TYPE R) is the type corrosponding to the domain of
the rule (function) f and (THE-FUNCTION R) is the function corrosponding
to R. If Si and S2 denote sets then instances the type (RULE-BETWEEN S1
S2) are rules that give mappings from Si into 52.

(DEFTYPE (DOMAIN-TYPE (R RULE))
(MEMBER-OF (RULE-DOMAIN R)))

(LEMMA (IN-CONTEXT
(FORILL ((Si NON-EMPTY-SET) ((ET-BE S1 NUN-EMPTY-SET)

(32 NON-EMPTY-SET)) (LET-BK 32 NON-EMPTY-SET)
(EIISTS-OME (LET-BK Y (MEMBfl-OF 52))

(RULE-BETWEEN S1 S2)))) (LET-BK ft
(niE-RULE M (MMER-OF SIM) Y))

(NOTE
(EXISTS-SOME CIULE-BETWEEN S1 52)

(DEFTERN (RESTRICT-RULE (ft RULE)
'4(5 (SUBSET-OF

(RULE-DOMAIN 1)
(THE-RULE M( (MEMBER-OF 5))

(APPLY-RULE R M)

,

A'

* (DEFTERM (RESTRICT-RELATION (Rt RELATION)
(S (SUBSET-OF

(RULE-DOMAIN )
-~~ (TIE-RULE M( (MEMBER-OF 5))

(.

t

4'.

,B KI {I-OTZ

(F"CL(S 0-~PYST)(LTB l1JEPYST
-S.2I0-'PTST)(T'-ES 0-~PYsT

a>
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b (DEFTYPE (INJECTIVE-RULE-BETVEEN (SI SET) (S2 SET)
(LAMIBDA ((1 (RULE-BETVEEz Si S2)))

(FOftALL, ((Y (MENBEK-OF Si)))

(EXACTLY-ONE (I (MEKBER-OF (RULE-DORAII RM)
(VV (kPPLY-RULE 1 1) (APPLY-KULE R Y))))

(DEFTYPE IIJECTIVE-RULE

(iRITABLE-AS R
(R (INJECTIVE-RULE-BETWXEI Si S2))
(Si SET)
(52 SET))

(DEFTERM (RULE-RAubE CR RULE))

(THE-S IT-lW-ALL
(URITABLE-AS (APPLY-MILE R 1)

(I (HERBER-Of (RULE-DOMAIN R))))))

V..V

0% ,4
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The type SYMBOL and the macro QUOTE are implemented primitively. All
atomic quotations are symbols. A structure is a rule whose domain is a set
of symbols.

(DEFTYPE STRUCTURE

(LAMBDA ((R RULE))
(AND (EXISTS-SOME

(KERBER-OF (RULE-DOMAI R)))
(IS-EVERY (MEMBER-OF (RULE-DOMAIN R))

SYMBOL))))

(DEFTYPE (SIGSNTURE-SYMBOL (v STRUCTURE))
( EBER-OF (RULE-DORAII )))

(DEFTERR (STRUCTUPE-COMP (IT
(STRUCT STRUCTURE)
(STH (SIGNATURE-SYIBOL STRUCT)))

(APPLY-RULE STRUCT SYR))

(DEFTERN (ASSIGN (AR THING) (VALUE THING) (OLD-RULE RULE))
(THE-RULE (i (0-TYPE

(EQUAL-TO irG)
(MEMBER-OF (RULE-DONAII OLD-RULE)))))

(IF (a I ARG)

,. VALUE
F(APPLY-RIL OLD-RULE I))))

(LEMMA (IN-CONTEXT
(FORALL ((S SYMBOL) ((LET-BE W STRUCTURE)

(VA. THING) (LET-S s SYMBOL)
(, STRUCTRE)) (LET-BE VAL THING)

(IS (ASSITR U AL ) (LET-91 P2 (ASSIGN S VAL- ))
ASIGNS) )AL ) (PUSK-GOAL (IS 12 STRUCTURE)))

(U2-COWTEXT
((LET-BE SYR

(WERIER-OF (RULE-DOMAIN V12))))

(IN-CONTEXT
((PUS-G OaL (IS SYR SYMBOL)))

(IN-CONTEXT ((SUPPOSE (a SYR S)))

(NoTE-GOAL))

(NOTE-GOAL))
(NOTE-GOAL)))

(DEFTESH (BASE-STRUCTURE (S SYMBOL) ( THING))

(THE-RULE (Ml (EQUL-TO S))) I))

(LEMMA (IN-CONTEXT
(FORALL ((S SYMBOL) ((LET-B S SYMBOL)

(I THING)) (LET-li I THING)
O.* (IS (BASE-STRUCTUE S I) (LET-HE P (BASE-STRUCTURE S ))

STRUCTURE)) (PUSH-GOAL (IS W STRUCTURE)))
(NOTE (IS , STIRUCTUE ) ))

'
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(DEEUN (MAIE-sET-STUCTURE (S NON-EMPTY-SET)
(BASE-STRUCTURE 'U-SET 9))

(DEPTERK (U-SET (V STRUCTURE))
(STUCTURE-COMOENT V 'U-SET))

(DEFTYPE SET-STRUCTURE

(LAMBDA ((S STRUCTURE))
(AND (IS 'U-SET (SIGNATURE-SYMBOL S))

w (IS (U-SET S) NON-EMPTY-SET)

(LEMMA WNEPYST)(IN-CONTEXT NO MPTSl 5)

(ISRAKE-SET-STRUCTURE S) (LET-BEM ME-TSRUUES)
SET-STRUCTURE)) (LET-BE SYR 'U-SET)

(LEKKA(MOTE (IS M SET-STRUCTURE)

(FOIfLL ((S NON-EPITY" SET))(VT -USEM) M

((U-SET (MAKE-SET-STRUCTURE 5))
5))

(DEETYPE (IN-U-SET (V SET-STRUCTURE)
(M EMBER-OF (U-SET U))

(LEMMA (IN-CONTEXT ((ET-BK V SET-STRUCTURE)
(FORALL ((V SET-STRUCTURE) (LET-BE S (U-SET U))

(EXISTS-SOME (IN-U-SET w)))) (iNT (EXSTS-SOME (IN-U-SET V)))
(IN-CONTEXT ((ET-BE I (IN-U-SET U))

(LEMMA (NOTE (IS 1 THING))
(FOIALL1 ((V SET-STRUCTURE) (IN-CoATE? ((ET-BE SI (MEAKE-SET W))

(I (IN-u-SET U)) (NOTE (IS SI (NON-EMPTY-SUBSET-OF 5)
(IS X THING)) (IN-CONTEXT ((UT-BE Y (IN-U-SET W)

(LE~n(LET-DR SIT (MAKE-SET I YM)

(FORALL ((V SET-STRUCTURE) (OE(IS SY(SUBSET-OF 5)
(I (IN-U-SET U)) (IN-CONTET ((ET-IS 52 (SUBSET-OF S))

(IS (RAKE-SET I) (LET-BE S12 (INSERT I 32)))
(NON-EMPTI-SUBSET-OF (NOTE (IS S12 (SUBSET-OF S))))))

(U-SET ))

(LEM
(FOLALL M( SET-STRUCTURE)

UI (IN-n-SET 0)
(Y (IN-U-SET U))

(IS (MALE-SET X Y)
(SUBSET-OF (U-SET U)))))

(LEMMA
(FORALL ((V SET-STRUCTURE)

(I (IN-U-SET U))
(82 (SUBSET-OF (U-SET U))))

(IS (INSERT I S2)
(SUBSET-OF (u-SET U)))))
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( LEMA ( IN-COITEXT
(FORALL (( SET-STRUCTURE) ((LET-BE V SET-STRUCTURE)

(52 (SUBSET-OF (u-sEn W)))) (LET-BE S (U-SET W))
Sj.(1 (S52 SET)) (LET-BK S2 (SUBSET-CF CU-SET EM)

(LEM(VOA (IS 52 SET) 2(LEMA (VOTE (IS-EVERY (EBER-OF S2)
FORI,T- I(N SET-STRUCTURE) (IN-U-SET V)

(S2 (SUBSET-OF (U-SET W)))) (I-COETEIT

(IS-EVERY (MEMBER-OF 32) ((SUPPOSE
(IN-U-SET U)) (EXISTS-SORE (MEMBER-OF $2))))

(LEMMA (NOTE (IS S2 (IOI-EMPTY-SUBSET-OF S)))))

. (FORILL ((W SET-STRUCTURE)

(S2 (SUBSET-OF (U-SET U))))
C-> (EXISTS-SOME (MEMBER-OF S2))

W. (IS S2
..% (10-EMPTY-SUBSET-OF
.# % (U-SET V))))))

%

t'p

NJ.
,I'.

-w y'.
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A.3 Maps
5%l*o

The terminology used in the proof of Stone's theorem makes a distinction
between rules and maps: a rule is a just a set of pairs while a map consists
of a domain set structure, a range set structure, and a rule between the
underlying sets of the domain and range structures. The significance of the
distinction between rules and maps can be seen in the following formula:

(IS (DOMAIN F) LATTICE)

If F denoted a rule (a set of pairs) there would be no well defined domain
structure for F, at best the domain of F would be an unstructured set. On
the other hand maps, as opposed to rules, have specified domain and range
structures and it is possible that the domain of F is in fact a Lattice.

Category theory generalizes the notion of a map to the notion of a Lmor-
n ,phism". A morphism is like a map in that it has a domain and a range but

the domain and range of a morphism need not be set structures. In anticipa-
tion of category theory we define a "mapoid" to be a structure with domain

and range slots. A map is a mapoid in which the domain and range slots are
filled with set structures and where the rule slot is filled with a rule between
the underlying sets of the domain and range.

(DETYPE XAPOID
(LIAMDA ((v STmUCTURE))

C (AED (IS 'DONAIS (SIGNATURE-SYNBOL W)

(IS 'RANGE (SIGNATWtLE-STHBOL V)))

(DEFTERB (AIE-IAPOID (D THING) (I THING) (V ST UCTURE))
(ASSIGN ' D3AIN D

(ASSIGC 'LRAGE I IM)))

(DEFEIuN (DW1AIN (V STUCITUIE))
- ,. (smucEcwom~o- C 'DORNA))

-. (DEFTERII (341GE (V STRUICTUE))
(ST-CTUIE-CluOIET 'RANGE))

-.. ..'<.

.
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(LEMMA (iN-CtiNTEXT
>4 (FO.ALL- ((D TWING) ((LET-BE D THING)

4(1 THING) (LET-BE R THIN)
(V STRUCTURE)) (LET-BE V STRUCTURE)

(IS (MIKE-MAPOID D R W) (LET-BE N (NAKE-MAPOID D R V))

PAPOID))) (LET-BE W2 (ASSIGN 'LANGE R W))

(LET-BE STMI 'DOMAIN)
(LEMMA (LET-BE SYM2 'RANGE))
(FORALL ((D THING) (NOTE (IS N MAPOID))

(it THING) (ROTE (
= 
0 (DOMAIN )))

(V STRUCTURE)) (NOTE - (ANGE K))))

4. (DOMAIN
(MAKE-M&POID D X U)))))

(LEMMA
(FORALL ((D THING)

(R THING)

(V STRUCTURE))
" 4- K%a

(RANGE

(MAIE-HAPOID D . )))))

(DEFTERN (KAlE-NAP (G SET-STRUCTURE)
(H SET-STIUCTURE)
(R (RULE-BETWEEN

(U-SET 0)

(NAE-POIDSET )

(BASE-STRUCTURE 'RULE )))

(DEFTYPE (EAP-DITVEEN (O ST-STRUCTURE)
(I SET-STRUCTtUE))

(URITABLE-AS (MAE-MAP 0 N I)

(I (RULE-BETVEEN (U-S&T G)
(U-SET )))))
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(LEMMA (IN-CONT
(FORALL ((Q SET-STRUCTURE) ((ET-BE G SET-STROCTURE)

(a SET-STMUCT USE) (LET-BE H SET-STRUCTUR))
(EXISTS-SOME (IN0-CONTEXT

(RULE-BETWEN (U-SET G) ((ET-SE Si CU-SET 0)
(U-SET 8))))) (LET-BE S2 (U-SET N))

(NOTE
(LEMMA (EXISTS-SONE (RULE-BETWEEN 51 S2)))
(FORALL ((G SET-STRUCTURE)(N-NTX

(H ST-SRUCTRE)((LET-SE I (RULE-BETWEEN St 92)))
( R (RULE-BETWEEN (U-SET G) (NOTE (IS R RULE))

(U-SET EM 'NOTE (a (RULE-DOMAIN 1) (U-SET G))
(IS R RULE)) (NOTE

(LEMMA (FURALL1 ((I (MEMBER-CF

(FOULLT ((H SET-STRUCTURS) (UEDMI M

N(a SET-STRUCTUE) (IS (APPLY-RULE R 1)

(R (RULE-BETWEEN (U-SET C) (MEMBER-OF (U-sEr H))))))))

(U-SET a))))
- - (x (RULE-DOMIAIN R)

(U-SET G))))

(LEMMA
(FORLL

((G SET-STRUCTURE)
CH SET-STRUCTURE)

(Rt (RULE-BETWEEN (U-SET C)
4 1(U-SET H))

(X (MEMBER-OF (RUTE-DOMAIN R))))
(IS (APPLY-MAP 1t 1)

(MEMBER-OF (U-SET N))

(DEFTYPE (nAP-ON (G SET-STRUCTURE))
(WITABLE-AS F

(F (NAP-REEKEEN 0 Q)
(I SET-STRUCTURE))

(DEFTYPE (MAP-INTO (R SET-STRLUCTURE))

(MAIlABLE-AS F
(F (MAP-BETWEENI a H))

A (G SET-STRUCTURE))

(DEPTYPE MAP

(MAIlABLE-AS (MAP-BETWEN G H)
(GaTSRUTlE

(I SET-STRUCTURE)

(DEFTEI (MAP-RULE (N MAP))
(STUCTURE-COMPONENT x 'RULE))

'A-
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(LEMMA (IN-CONTEXT
(FORALL ((H SET-ST&UCTURE) ((ET-BE G SET-SI1UCTURE)

(a SET-STRUCTURLE) (LET-BE I SET-STRUCTURE)
(R. (RULE-BETWEEN (LET-BE 1 (RULE-BETWEEN

(U-SET G) (U-SET G)

(U-SET HM)) (U-SET HM)
(m (DOMAIN (MAKE-NAP G H R)) (LET-BE N (MAKE-NAP G 9 R))
GM) (LET-BE B (BASE-STRUCTURE

'RULE
(LEMMA R))

(FORALL ((G SET-STRUCTURLE) (LET-BE V (ASSIGN 'RANGE H 6))
(USH G)-TRCUIE (LET-BE SYNI 'DOMAIN)

(R. (ILULE-BETWEEN (SEG)(LET-BE SYM2 'RANGE)
(U-SET H))) (LET-BE SYM3 'RULE)

(a (RANGE (MAKE-MAP 0 H R))(0h DOANN )
IM(NOTE (a(RANGE N) H))

(LEMA (NOTE ( (AP-RULE N) R))

(FORAML ((G SET-STRUCTURE)
(SET-STIUCTURE)

(K (IULE-BETV El
4 (U-SET Q)

(U-SET H)
(a (RAP-RULE (MAKE-RAP G H R))

(LEMMA (IN-CONTEXT

(FORALL SliT-STRUCTURE) ((ET-BE G SET-sTRUCTURE) -

(G SET-STRUCTURE) (LET-BE H SET-STRUMCRJE)
(M (RAP-SETWEEN G HM) (LET-BE RI (MAP-BETWEEN G H0)

(a 0 (DOMAIN N)))) (VITM-AS M (RAZE-NAO G a R)
(R (RULE-BETwEEN

(FOUALL ((G SET-STRUCTURLE) (U-SET N)))
(I SET-STRUCTUXE) (NOTE (a (DOMAIN N) 0))
(M (RAP-BEWEEN a W)) (NOTE (- (RANGE N) W))

a (RANGE N)

(DEFrERN (APPLY-MAP (F RAP)
(X (IN-U-SET (DOMAIN F))))

(APPLY-RULE (NAP-RULE F) X))
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'C(LEMA (INf-CONT
* -(FatALl. ((N NAP)) ((ET-BE N RAP)

(Is (0011:5 H) (nIt-As N (MAP-BETWEE G B)
SET-STRUL1UR))) (G SET-STRLUCTURE)

UN SET-STRUCTURE))
(ZIOIA flITE-AS N (MANE-NAP 4 H 1)

(FORALL ((N MAP)) (Z (RULE-BETWEE (U-SET G)
((RULE-DOmAIN (AP-RULE N)) (U-SET AM)

-~ (U-SET (DOMAIN N))))) (LET-BE I (IN-U-SET (001113 )

N. (LEIMA (NA) (VOTE (IS (DORI N) S5,--STRUCTUJRE))

(POP&"ALL MP) (NOTE C'- (RULE-DONATN (NAP-RULE N))

(IS (RANGE N) SET-STRUCTURE)) (U-SET (DOMAN NM)))
(NOTE (IS (RANGE N) SET-STILUCTUXE))

(LEMMA (NOTE (IS (NAP-WU N)
(FroAni ((N NAP)) (ROLE-BETWEEN

(IS (NAP-RULE N) (U-SET (DOMAIN x))

.. (RULE-BETWEEN (U-SET (RANGE N)))))
r.(U-SET (DOMAIN N)) (NOTE 'IS (APPLY-MAP N 1)

e. (U-SET (BRGE N)))) (IN-U-SET (RANGE N)))))

(LERMA
(FORLL (CN KAP)

UI (IN-U-SET (DOMAIN K))))
(7S (APPLY-MAP H 1)

* (IN-U-SET (RANGE N))

(DEFTYPE (IN-NAP-DOMAIN (F MAP)
IN-U-SLT (DOMAII F)))

(DEFTPE (IN-AP-WOGE (F NAP))
4'. (fl-U-SET (RANGE F))

.4..
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" (L1ElA (IN-CONTEXT

(FOBAI. ((M MAP)) (LET-BE R SAP))
(Is CU-SET (DCMAIN N)) (IN-CONTEXT

SET))) ((LET-BE U (DOMAIN N))

(LET-BE s (U-SET 6)))
(LEMA (NOTE (IS S SET))

(FORALL ((N NIP)) (NOTE (- (N-U-SET G)

(w (I-U-SET (DOMAIN M)) (MEMBER-OF S)))
(MENBER-OF (NOTE

(U-SET (DOMAIN N)))))) (EXISTS-SOME (REMBER-OF 5))))

(LEMA (IN-CONTEXT

(FORALL ((P MAP)) ((LET-BE G (RANGE M))

(EXISTS-SGME (LET-BE S (U-SET G)))

(AEER-OF (NOTE (IS S SET))

(U-SET (DOMAIN M)) ))) (NOTE (x (IN-U-SET G)
(MEMBER-OF S)))

(LEMMA (NOTE

(FORALL ((N MAP)) (EXISTS-SOME (MEMBER-OF 5)))))
(IS (U-SET (RANGE N))

SET)))

(LEMMA
* (FORALL ((M NAP))

(- (IN-U-SET (RANGE M))
(MEMBER-OF

-C.(U-SET (RANGE ))))))

(LEMMA
(FORALL ((K MAP))
(EXISTS-SOME

(MENBER-OF

(U-SET (RANGE N))))))

(I EMMA (IN-COrNEXT

* (FORALL ((M RM) ((ET-BE N NAP)
* (IS (RAP-RULE N) RULE))) (LET-BE t (MAP-RULE ))

(LET-BE Sl (U-SET (DOMAIN N)))
(LET-BE S2 (U-SET (RINGE N))))

(NOTE (IS t RULE)))

(DEFTERN (A PLY-NAP-TO-SET
(F MAP)
(S (SUBSsT-OF (U-SET (DOMAIN F)))))

(TEE-SET-OF-ll

* (WRIT&BLE-AS (APPLYs' AP F !'
(I (ME-BER-9JF ))

,0

,-
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(LE I~A (IN-COTEXT
(FORkLL ((M MAP) ((LET-BE n RAP)

(S (SUBSET-OF (LET-BE DSET (U-SET (DOMAIN M))

(u-SET (DOMAIN ))))) (LET-BE RSET (U-SET (RANGE M)))
(IS (APPLY-MIP-TO-SET N S) (LET-BE S (SUBSET-OF DSET))

(SUBSET-OF (LET-BE S2 (APPLY-MAP-TO-SET M S))

(U-SET (RANGE M)))))) (PUSH-GOAL
(IS S2 (SUBSET-OF RSET))))

* (IN-CONTEXT
C((SUPPOSE

(EXISTS-SOME (MEMBE,-OF S2)))

(LET-BE X (MEMER-OF S2))
(YRITE-AS X (APPLY-AP N Y)
(Y (MEMBER-OF S))))

(NOTE-GOAL))
(NOTE-GOLL))

(DEFTERM (IMAGE (F MAP))
(APPLY-MAP-TO-SET F (U-SET (DOMAIN F))))

(LEMMA (II-CONTEXT

(FORALL ((M HIP)) ((LET-BE N MAP)

- (= (IMAGE M) (LET-BE S (U-SET (DOMAIN M)))

*% (THE-SET-OF-ALL (LET-BE 32 (IMAGE N)))

,. (WRITABLE-AS (APPLY-NAP N I) (NOTE

(I (IN-U-SET C- (IMAGE N)

(DOMAIN M)))))))) (THE-SET-OF-ALL
(WRITABLE-AS (APPLY-NAP N 1)

(LEMMA U (II-V-SET
(FORALL ((M RAP)) (DOMAI M)

(ElISTS-SOME (II-CONTEXT
(MEMBER-OF (IMAE ))))) (LET-BE 53 (U-SET (RANGE M)))

(LEM (LET-BE I (Il-U-SET (DOMAIN X))))

(FORA.L (CM MAP)) (NOTE

(IS (IMAGE M) (EXISTS-SOME (NEMBER-OF (IMAGE M))))

(NON-EMPTY-SUBSET-OF (NOTE

(U-SET (RANGE )))))) (IS S2 (N0-EMTY-SUBSET-OF S3)))))

(DEFTERM (PREIAGE (F NAP)
(S (SUBSET-OF

(V-SET (LANlGE F)))))

- (TIE-SET-OF-ALL ) ())))R-0D
'4~. (U-SET (DOMAIN F))))

(IS (APPLY-MAP F I) (MEMBER-OF S))))

Rj C4 c ,a., f

.

i ... . .i-
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(LEMMA ( (IN-COITV FRP

(S (NON-EMPTT-SUBSET-OF (LET-BE ISET (IMAGE F))
-t (IMAGE F))) (LET-BE S (U0i-EMPTY-SUBSET-OF

(IS33 (IMAGE F))
(SUBSET-OF (LET-BE RSET (U-SET (RANGE F))))
(U-SET (RANGE F)))))) (lOTE (IS S (SUBSET-OF ESET))

y~. (NOTE (EXISTS-SOME (MEMBER-OF )
(LEMMA
(FORLL ((F MAP)

(S (NON-EMPTY-SUBSET-OF
(IMAGE F))))

(EXISTS-SOME (MEMBER-OF S))))

V(LUCIA (IN-CONTEXT
(FORALL ((F MAP) ((ET-BE F MAP)

(Y (MEKBEI-OF (IMAGE F)))) (LET-SE ISET (IMAGE F)
(EXISTS-SOME (LET-BE Y (MEMBER-OF ISET)

p(MEMBER-OF (LIT-BE ST (MAZE-SET Y))
(FuRnIRIE F (HUKE-SET Y)))))) (LET-BE PEE-Ti (PREIMAGE F SY))

(LEMMA(LET-BE PRE-T2

(LM T (FMA P) (TEE-SET-OF-ALL UI (IN-U-SET
(FORLI.((F AP)(DOMAIN F)))

(Y (MEMBER-OF (IMAGE F)))) ( (PPLY-RA F 1) T)
((PREIMAGE F (MAlE-SET Y)) (IN-CONTEIT

(THE-SET-OF-ALL
(I (N-USET(DOMIN )))((WRITE-AS Y (APPLY-MAP F 1)
U (I-U-ST (DMAINFM1 (IN-il-SET (DOMAIN F))

-(APPLY-MAP F I) Y))))) (NOTE

(EIlST-SORE (MEMBER-OF Pal-Ti))))
A (IN-CONTEXT

((nsuS-OAx (w PuE-ri PRE-Y)))
(IN-CONTEXT

((ET-s I (MEMBEI-OF PUE-TI)
(LET-RE Fl (APPLY-MAP F IM)

* (NOTE (IS P3-TI (SUSET-OF PUk-T2)))
(NOTE
(nUITS-SOKE (MEMBE-OF P11-Y2)

(IN-CONTEXT
((LT-SE I (MEMBER-OF PRE-Y2)))

(NOTE-OnL)

(DEFflPE INJECTION
* (LAMBDA ((F MAP))

(11 (MAP-RULE F)
INS ECTIVE-RULE))

4.r~
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(FOAULL ((N MAP)) ((ET-BE H HAP)
(>(FowLL M( (HNER-OF (SUPPOSE

(INAGE M)))) (FUHATL (CT (REUBEN-OF (IMAGE N))))
(IS CPREIU.AGE N (HAKE-SET V) (IS (PREIKAGE N (HAKE-SET Y))

SINGLETON-SET)) SINGLETON-SET)))
*(IS H INJECTION)))) (PUSH-GOAL (IS X NJEfCTIOI)

(IN-CONTEIT

((ET-BE R (NAP-RULE N))
(LET-BE SI (U-SET (DONAIN NfM

(LET-BE S2 (U-SET (RANGE MM)
(LET-BE I (IN-U-SET (DOMAIN N)M
(LET-BE HI (APPLY-NAP M M))

(IN-COITEXT
((ET-BE PHI-RI

(PREIHAGE N (HAKE-SET NI)
(N0TE (EXACTLY-ONE (MEMBER-OF PRE-HI)

(INCOT-E 12 (IN-U-SET (DOMAIN H))

(a (APPLY-RULE R 12)

(APPLY-HAP H K)
(LET-BE 13 (IN-U-sET (DOMAIN H))

C(APPLY-RULE R X3)

(APPLY-HAP N IM)

(NOTE-GOAL)

(DEFTYPE CINJECTION-BETWEEN (0 SET-STRUCTURE)
(H SET-STRUCTURE))

(AID-TYPE (NAP-BETWEEN 0 5)
INJECTION))

(DEFTYPE SUBJECTIOE
(LAMBDA (CF NAP))

Ca (IMAGE F)
(U-SET CRANGE F)))))

(DEFTYPE (SURJECTIou-ETWEEI (0 SET-STRUCTURE)
UN SET-STRUCTURE)

I' (AND-TYPE (NAP-BETWEEN 0 5)
SUECTION))

(DEYTPE BIJECTION
(AND-TYPE SUAJECTION

INJECTION))

(DEFTYPE (BIJECTION-BETVEEN (G SET-STRUCTURE)

(AND-YPE MP4EWU (H SET-STRUCTURE))

313 ECTION))

(DEFTERN (IDENTITY-HAP (v S!%T-STRUCTURE))
(HAKE-HAP

v

(THF-RULE M( (IN-U-sET W)

N

NY
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(tEN111 (1N-cONTZXT ((ET-BK it SET-STRUCTURE)
(FORA"L ((V SET-STIUCTURE)) (LET-BE A

(IS (IDENIT-AP V) (TEE-RULE M((I (X-U-snT V))
(PRAP-BETWEEN V V)))) V)

(LENNA (LET-BE S (U-SET Wt)
(LEMMI(LET-BE I (WEMEn-ar S))

(FORALT ((W SET-STRUCTURE) (LET-BE I (IDENTITY-MAP Wt)))
(K (MEMBER-OF (U-SET VW))) (NOTE (IS T (HAP-BETWEEN V it)))

((APPLY-NAP (IDENTITY-MAP Vt) 1) (NOTE (a (APPLY-NAP I 1) IM)
IM)

(LEXXU (IN-CONTEXT
(FOLALL ((it SECT-STRUCTURE) ((ET-BE V SET-STRUCTURE)

(IS (IDENTITY-MAP W) ansazTow) (LET-BE I (IDENTITY-MAP V))
(POSE-GOAL (IS I BIIKCTION))

(INI-CONLT
((USE-GOAL (IS 1 SUIJECT.ION)))

(IN-CONTEXT
*6 ((LET-as ISETI (IMAGE I))
4 (LET-BEC ISET2 (U-SET V))

(PUSH-GOAL (a 15511 15512)))
(IN-ONTEXT

((ET-BK I (UER-OF ISET))
(NanE-GOAL))

(NOTE-GOAL))

(IN-CONTEXT
((FUSE-GOAL (IS I INJECTICI)

(LET-HE I (IN-U-SET (RNiCE M))
(LET-BE PELE-I

(PREINAGE I (MIs-SET W)
(LET-BE FRXI c (NNER-OF PUE-I)
(LET-BE P3312 (NENBER-OF PUE-I)

(NOTE (EXACYLY-ONE
(RaERE-OF PUt-I)))

(NOTE-GatL))

(NoTE-GOAL))

(LIMMt (EXISTS-SORE INJECTION)) (N-CONTEXT ((ET-BE N BIJECTIOI)
(NOTE (EXISTS-SOME INJECTION))



(LEMMA (IN-CONTEXT
(FORUI UN INJECTION) ((LET-BE K INJECTION)

(Y (MEMBER-OF (IMAGE N)))) (LET-BE T ( PIER-OF (IMAGE MM)
(EXACTLY-ONE (X (IN-u-SET (PUSH-GOAL

(DOMAIN N)M (EXACTLY-ONE (I (IN-U-SET (DOMAIN MM)
(=(PPLY-NAP N 1) (=(PPLY-NAP N 1)

(IS-CONTEXT
((ET-BE R (MAP-RULE N))

* (WRITE-AS R (INJECTIVE-RULE-BETWEEN DSET S3)
* (DSET SET)

(S3 SET)
* (IS-CONTEXT

((WRITE-AS T (APPLY-NAP N 1)
(X (IN-U-SET (DOMAIN N)))))

(NOTE (EXISTS (S2 (IN-U-SET (DOMAIN N))

((APPLY-NAP M 32)

(IN-CONFTEXT
((ET-BE 11 (IN-U-SET (DOMAIN N))

(- (APPLY-NAP N Xl) Y))
4 (LET-BE 12 (IN-U-SET (DOMAIN N))

(- (APPLY-NAP N X2) Y))
(NOTE-GOAL)

(DEFTYPE (STRUCTUI.E-CONTkININO (S SET)

(LAMBDA ((V SET-STRUCTURE))
(IS S (SUBSET-OF (U-SET V)))))

(LEM (III-CONTEXT
(FOILL ((S NON-EMPTY-SET)) ((ET-BE S NON-EMPTY-SET)

(IS (NAKE-SET-STRUCTURE 5) (LET-BE V (MAKE-SET-STRUCTURE S))
(STRJCTUUE-CONTAINING 5))) (NOTE (15 V (STRWCTUU-CONSTAINING )

(DEFTEXX (SET!-RARGE
(F NAP)
(V (STRUJCTURE-CONSTAINING (IMAGE F))))

(MAKE-MAP (DOMAIN F) V (NAP-RULE M)

(LEMMA (IN-CONTEXT ((ET-BE i MAP))
A (FORALL1 ((F MAP)) (INI-CONTEXT ((ET-HE ISET (IMAGE F)

(EXISTS-SOME (NOTE

(STRUCTURE-CONFTAINING (EXISTS-SOME

(IMAGE F))) (STRUCTUE-COSTAINING (IAGE F))))

J (LEMMA(IN-CONTEXT
((LET-BE V

(FORALL ((F RAP) (STRUCTURE -CONTAINING (IMAGE F))))
(V (S TRVUCTURE-CONrTAIING (NOTE (1S V SET-STRUUTUNE))

(IMAGE F)
(IS V SET-STRUCTURE))
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(IN-CoNTENT
(LEMA ((LET-BE r NAP)

(FORALI. ((i* RAP) ((ET-BE V

2.(V (STUCTURE-CONTAINING (STIIUCTUlE-CO9TII flNG

(IMAGE F)) (IMAGE F)))

UI (M"NBEK-OF (IMAGE F)))) (LET-BE R (NIP-RULE F))))

(IS I (1u-U-SET W)))) (IN-CONTEXT
((LET-BE X (KERBER-OF

(LERMI (INAGE-OF F)))
(FORALL ((F PUP') (LET-BE 51 (U-SET V))

-~(W (STRUCTURE-CONTAINING (LET-BE S2 (IMAGE F)))
(IMAGE F)))) (NOTE (IS X (IN-U-SET 'i)

(IS (NAP-RULE F) (1-CONTEIT
RULE-BETWEEN (U-SET (DOMAIN F)) ((Pusu-CO.L

(U-SET V))))) (IS R (RULE-BErJEEN

CLEMMA (U-SET (DOMAIN F))
(FORLL (F AP)(U-SET II))))

( (VAL (SRCUECNAIN (LET-BE DSET (U-ME (DOMAIN F)))
( IAG CSRUTU.-CNTI) U (LET-BE UBET (U-SET V))Z

(IMAGE ~(LET-BE I (MMIER-OF DSeZT))
(IS (SET!-RANGE F V) (LET-BE MI. (APPLY-RULE R V))

(NAP-BETWEEN (DOMAIN F) W)) (NOTE-GOIL.))

(LEKKA (IN-CONTEXT
(FORALL ((F RIAP) ((LET-BE F2 (SEV-ANGE F V))

(W (STflUCTUNE-CONTAINING (IN-CONTEXT

Nr7(IMAGE F)))) ((ET-BE DSTRUCT (DOMAN FM)

(Is (SET!-RANGE F V) (NOTE
KIMAP (IS F2 (MAP-BETMEEN DSTRUCT V)))

(NOTE (IS FZ NAP))
(LEMMA (NOTE (a (DOMAIN F2) i(DONAIN F))
(FOIL ((F MAP) (NOTE (a (RANGE F2) V))

(V (STXUCTUNE-MI0NAIN1uG. (NOTE (- (NAP ROLE P2)
(IMAGE F)))) (MAP-RULE F))))

((DOMAIN (SET!-RANGE F W)) (IN-CONTEXT
(DOMAIN F)))) ((ET-hi I (IN-U-SET (DOMAIN F2))))

(LEMA(NOTE (=(PPLY-NaP F2 X)
(FOAtLL ((F MAP) (PL- M

(V (STaUC7IJNE-cONFTAINING

(IMAGE F))))
(- (RAGE (SET!-ANGE F V))

(LEMMA
(FORALL ((F NAP)

* (V (STRUCTURE-CONTAINING

(IMAGE F)
(- (AP-RULE (SET!-N.ANGE F W))
(RAP-RULE F))))

(LEMDI
(FORALL ((F NAP)

(W (STkUCTtJAE-CONTrAINING

(IMAGE F))
(I N-U-sET

(DOMAIN
(SET!-RANGE F7W)))))

(n (APPLY-MAP (SET!-RANGE F V)
I)

'- ~ (APPLY-MAP F V)))

si,



(FOWAL ((F RIP) ((ET-SE F MAP)
(V (sTRUcmuIL-COuTnImo (LET-SE V (STRUCTURE-COhNTnzff

(YIAG F)))) (IPAGE F))
(~(IMAGE F) (LET-SE F2 (SET!-UANGE F II))
(IMAGE CSET'-L&NGE F V))))) (LET-Rs TET (IMAGE F))

* (LET-BE ISET2 (IMAGE F2))
(PUSS-GOAL (a ISET ISET2)))

C (LET-BE I (MEKBER-OF SET))
(WITE-AS I (APPLY-nAP F Y)
C'! (Il-U-sEn (DOMAIN F)))))

(NOTE (IS ISET (SUBSET-OF 15512))))
(IN-CONTEXT

* ((LET-as I (MEMBER-OF ISET2))
(WRITE-AS I (APPLY-UAP F2 Y)
C(Y IN-U-SET (DOMAIN F2)))))

(NOTE (IS ISET2 (SUBSET-OF ISET)
(NOTE-GOAL))
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A.4 Relations, Choice, and Relation Struc-
tures

6'

-.

Relations are implemented as non-deterministic rules. More specifically, a
relation is implemented as a rule that maps an object to a set of "possible
values". Objects x and y are related under the relation r just in case y is a
member of the set r(z).

A relation r is "total" just in case for all x in the rule domain of r the set
r(x) is not empty. A choice function for a total relation r is a rule r' such
that for all x in the rule domain of r, r'(x) is a member of r(x). The axiom of
choice (as stated here) says that every total relation has at least one choice
function.

Transitive, symmetric, antisyrimnetric, reflexive and irreflexive relations
are defined in the standard ways and some standard facts are proven, e.g. a
transitive irreflexive relation is antisymmetric.

* A relation structure is a set structure with a slot that contains a relation
on the underlying set. This section contains a surprising number of trivial

- facts about relation srtuctures.

,.

"BE
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(DEvF I ;- RELATION
(LAMBOA C(R RULE))

(FORLL MC (NEMBER-OF (RULE-DOMAIN I)
(IS (APPLY-RULE R 1) SETM))

(DEFTYPE (RELATED-TO (I (MENDER-OF (ILULE-DOMAI ID)
(ft RELATION))

(MEMBER-OF (APPLY-RULE R V))

4 (DEFTYPE (RELATION-RANGE (R RELATION))

(FAMILY-UNION (RULE-RANGE ID)

* .. r~(DEFrYPE TOTL-RELATION
(LAMBDA C(CR RELATION))

(FORALL M( (RENDER-OF (RULE-DOMIN )
(EXISTS-SOME (RELATED-TO I 0))

(,DrFTYPE (COICE-FUNCTION-FOR CR TOTAL-1ELLTION))
% ,(LAMBDA ((R2 (RULZ-BETRN

(RULE-DOMAIN R)
CRELATION-RANGE I)

(FORALL M( (MERBER-OF (KULE-DOMAIN RI)

* C1YMMEI-OF (APPLY-RULE I M))

;the axion of choice:

CFONJ.L ( (R TOTAL-RELATION))
S. (EXISTS-SORE (CHOICF.-FUNCTION-FOI R)

(DEFTYPE (REL ATION-0N (S SET))

S. (I.MLE-BETYEKI S (POWRn-SET S))

(LEKKA (11-4:NTEXT

(FORILL ((S SET) ((ET-32 S SET)
9 (EXISS-SOME (RELATION-ON 5))) (LET-BE P (POME-SET 3))

(I ENKA(NOTE CEXIsTs-sanE (RELATION-al SD)

(FONALL ((S SET) (IN-CoNTEX ((ET-BE I (RELATION-ON 5))
(I (RECATION-ON S))) (IN-CONETEXT ((PUSK-GOIL (IS R RELATION))

(IS IL RELATION)) (IN-cNTmI

(EXISTS-SOM (BERBER-OF 5))
A(FORALL ((S SET) (LET-RE I (MEMBER-OF S))

(I (RELATION-ON 5)) (LET-BE Y (APPLY-RULE t ID))
C(RULE-DOmAIN R) SM (NOTE-GOAL))

(NOTE-GOAL)

(NOTE Cm (RULE-DOMAIN R) 5)

NJ
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(LEMMA (IN-CONTExT
(FORALL1 ((S NON-EMPTY-SET) ((ET-BE S NON-EMPTY-SET)

* (a RELATION)) (LET-BE I RELATION)
(>(AID (FORAll- (( (WNER-OF SD) (SUPPOSE (- (RULE-DoWAIE R) S))

(IS (APPLY-RULE a X) (SUPPOSE (FORALL MV (MEMBER-OF S)D
(SUBSET-OF sD) (IS (AmY-RULE Rt 1)

C-(RLE-DOMAIN 1) S)) (SUBSET-OF )
N(IS R (RELATION-al 5)))) (PuSS-GOAL (IS R (RELATION-ON 5)

* (IN-CONTEXT ((ET-BE I (MENDER-OF S))

(LET-BE Y
(APPLY-RULE R Vi)

(LET-BE D (POWER-SET 5))

(NOTE-GOAL)))

(LEMMA (IN-CONT
(FORALL ((S NON-EMPTY-SET) ((ET-BE 5 NON-EMtPTY-SET)

(I (MER-OF S)) (LET-BE Rt (RELATION-Ol S))
-,(R (RELATION-ON S)) (LET-BE I (MEMBER-OF S))

(Y (DELATE-TO 1 U)) (PUSS-GOAL (IS-EVERY (REL ATED-TO I R)

(IS Y (MMER-OF SD)) (HElMEt-OF SM)
* UIN-CONTEXT

((SUPPOSE

(EXISTS-SORE (RELATED-TO I U))
(LET-BE Y

(RELATED-TO I R))
(LET-BE P (POREX-SET S))
(LET-BE S2

(APPLY-RULE Rt M))
(NOTE-GOAL)

(NTE-GOAL))

(DEFFERN (PROVIDE-REL ATION (Rt (RELATION-ON (U-SET U))
4 (V SET-STRUCTURLE))

(ASSIGN 'RELATION I v))

(DEPTPE IELATION-STRUCTURE
(LAMBDA (( SET-STRUCTURE))

4 (AND (IS 'RELATION
(SIGNATURE-SYMBOL V))

(IS (STIDCTUNE-CUIP'OENT V 'RELATION)
Sr. (RELATION-ON (Ui-SET U))))))

(DEFTEN (GET-REL ATION (S RLELATION-STRUCTURE))
* (STRUCTURE-COMPONENT S 'RELATION)
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(LEMR (IN-CONTEXT ((ET-BE V SET-STRUCTUUE'
(FOR1LL ((W SET-STtUCTURE)) (LET-BE S (U-SET W1))

(EXISTS-SOME (NOTE
(RELATION-OfW (-SET W M)) (EXUSTS-SOME (RELATION-ON (U-SE? V))))

(IN-CONTEXT
(LEMMIA ((ET-BE I (RELATION-au (U-SET W)))

(FORALL ((V SET-STRUCTURE) (LET-BE 112 (PROVIDE-RELATION Rt W)
(It (RELATION-ON (U-SET W)))) (LET-BE SYMI IRELATION)

-~(IS (PROVIDE-RELA&TION R Wi) (LET-BE SYR2 'u-SET))
RELATION-STRUCTURE)) (NOTE (IS V12 AE"ATION-STRUCTURE))

(NOTE (- (GET-RELATION 112) R))

(FORAIL ((W SET-STRUCTUE) (VOTE (a (U-SET V12) (U-SET V"))))

(I (RELAT1ON-ON (U-SET W))))
(w (GET-RELATION

(PROVIDE-REL ATION R U))
W)

(LEKIU
.4 (FORALL ((V SET-STRUCTURLE)

MI (RELATION-ON (U-SET V)
((U-SET (PROVIDE-RELATION RV))

0 ~(U-SE VM)))

(DEFTERN (NAXE-RELITION-STRIcUIEM (I (RELATION-ON S))
(S SEW)

(P3.OVIDE-LELATION R (WALE-SET-SrhIJCUlE 5))

(LENNA (IN-CONTEXT
(FORall- C (S NO#-EHPTYSET) ((ET-BE s sol-EWITI-SuT)

(R. (W.LATION-OIf S)) (LET-BE It (RELA&TION-OF S))
(IS (MkNZ- ELAT0ON-STZUCTURE R 5) (LET-BE V (NARE-IELATIOS-SflUCTJNE R W)

RELATION-STRUcTURE)) (LET-BE V12 (MAIE-SET-STXUCrURE 5))
(NOTE CIS W RELATION-STRUCTURE)

(LMmA (I=T (- (GEl-ELATION V) 1))
(FORALL ((S NON-EMT-SET) (NOTE (a (U-SE! W1) 5))

(1 (RMLTION-ON 5))
(z (GET-RELATION

(NAZE-aELATION-sTRUCTnE R S))

N))

(LEMA
* (FORALL- ((S NON-EMT-SET)

(R. (RELATION-ONf 5))
* (w (U-SET

F* (IIAERELAT1ONSTUCTURE 1 S))

(DEFTEU (IESTRC-RL ATION-STRJCTURE

(R. IELLTION-STIUCTURE)

(S (SON-EMPTY-SONNET-OF (U-SET I)
* - (MAM -RELATION-STkUCTUIE

(RESTILICT-ILATION (GET-RELATION 1) S) S))

1%%
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(LEKKA (IN-CONTEXT

(FORULL ((R RELATION) ((ET-BE It RELATION)
CS2 (SUBSET-OF (LET-BE 5 (RULE-D3WAIN R))

(R=L-DOWAIN a)))) (LET-BE S2 (SUBSET-OF S))
(IS (RESTRICT - ELATIIOf R S2) (LET-BE R2 (RFSTRICT-RELATIONI S2))

(RELATIOX-ON S2))))
(Il-CONTEXT

((PUSH-GOAL (IS R2 (RELATION-ON S2))))
'FCRLI ((R RLATION) (IN-CONTEXT

(52 (SUBSET-OF ((SUPPOSE

.7(RULE-DOMAIN R))) (EXISTS-SOME (KENDER-OF S2)
(11 (NflIBER-OF S2)) (LET-BE X (EMBIA-OF S2))
(12 (IIERBER-OF S2,)) (LET-BE S3 (APPLY-RULE R 1))

(IFF (LET-BE S4 (APPLY-RULE R2 W))

(is xi1 (NOTE-GOAL))
-(RELA&TED-TO X2 a)) (IN-COITET

-(IS 11 ((SUPPOSE
*(1 (R TE -TO 12 (NOT

(RESTRICT- RELATIN 01 R52)))))) (EXISTS-SORE (REIIBER-OF S2))))
* * (LET-3E P (PIW~Ea-sET 52)))

(VOTE-COAL))
* (NOTE-GOAL))

(IN-CONTEXT

ir, (FORAIT MC (WEMBERl-OF S2))
4-. (Y (HRBER-OF S2)))

(1FF (IS I (IELATED-TO Y R))
.r (IS I (RELATED-TO Y R2))))))

(IN-CONTEX
((SUPPOSE

* -, 4.(EZISTS-SONE (KEKBER-OF S2))

(LET-SE Z (KERBER-OF $2)
(LET-BE Y (MEKBER-OF S23)
(LET-BE St (APPLY-RULE R Y))
(LET-BE S32 (APPLY-RULE 312 Y))

((SUPPOSE (IS I (RELAITED-TO Y IM))

- wd*.(NOTE-GOAL))
(NOTE-GOAL))

- (NOTE-GOL))

Ai
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(LEMu (If-CONTEXT ((ET-BE V RELATION-STRUJCTURE)
(FORALL ((W RELATION-STRUCTURE) (LET-BE S (U-SET W))

(EXISTS-SOME (NOTE
(NON-EMPTY-SUBSET-OF (EXISTS-SOME

(U-SET W))))) (NON1-EMPTY -SUBSET-O F (U-SET W))))
(IN-CONTEXT

(LEMMI. ((ET-BE S2 (SON-EMPTY-SUBSET-DF S))
(FORAL.L ((W RELATION-STRUCTURE) (NOTE (IS S2 NON-EMPTY-SET)

(S2 (5ON-EMPTY-SUBSET-OF (IN-CONTEXT
N. (U-SET W)))) ((ET-BE R

-:(1S S2 NON-EMPTY-SET))) (RESTRICT-riELATION

(LEMMA(GET-RELATION W)

(FORALL ((W RELATION-STRUCTURE) ^)

(32 (NON-EMPTY-SUBSET-OF (LET-BE R2 (GET-RELATION U))

(U-SET M)))

r,(IS (RESTRICT-RELATION (NOTE (IS (RESThICT-RELATION
(GET-RELATION U) (GET-RELATIUN W)

S2) S2)

(RELTIONON 5))))(RELATION1-ON S2)))

(LEMMA (NOTE

*(FORALL ((V RELATION-STRUCTURE) (FORALL ((7;1 (MEMBER-OF S2))

(S2 tNON-EMPTY-SUDSET-OF (I (MEMBER-OF S2M)

(U-SET U)) (IFF

(XI (MEMBER-OF $2)) (IS X

M1 (MEMBER-OF S2))) (REIiTLED-TO ?:I (GET-RELATION W))

(IFF (is I

(IS 11 (RELATED-TO ?:I

(RELATED-TO 12 (RESTRICT-RELATION
(GET-RELATION V)) (GET-RELATION W)

(IS i

V.,. -(RELATED-TO X2

(RESTRICT-RELATION

* (GET-RELATION U)

52))))

w SI
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(LEMMA(IN-CONTET
-. -' cRaIa c(V RELATION-STRUCTURE) ((ET-BE V RELATION-STRUCTURE)

(S2 (NON-EMPTY-SUSSET-OF (LET-BE S (U-SET W))

CU-SET W)))) (LET-BE 52 (NON-ERPTY-SUBSET-OF S))

(IS (RESTRICT-RELATION-STRUCTURE CLEW-BE Rt
v (RESTRICT-RELATIoN (GET-RELATION V) S2))
S2) (LET-BE W12

RELATION-STRUCTURLE)) (RESTRICT-RELATION-STRUCTURE W S2)))

(LEMMA (NOTE (IS (RESTRICT-RELATION-STRUCTURE W S2)

(FORALL ((W RELATION-STRUCTURE) RELATIOI-STRUCTURE)
(52 (NON-EMPTY-SUBSET-OF (NOTE (= (GET-RELATI ON

CU-SET W)))) (RESTRICT-RELATION-STRUCTURE W S2))

((GET-RELATION (RESTRICT-RELATION

(RESTRICT-RELATION-STRUCTURE (GET-RELATION Wd)

W 
52)))

-- S 2)) (NOTE (- (U-SET
(RESTRICT-RELATION (RESTRICT-RVLATION-STRUCTURE U 52))

-(GET-RELATION U) S2)))) S2))'

- (LEMMA
(FORALL ((W RELATION-STRIUCTURE)

(S2 (301-EMPTY-SUBSET-OF
(U-SET )

C-(U-SET
(RESTRICT-RELATION-STRUCTURE

V
S2))

S2)))

(LEMMA (IN-CONTEXT

-. (FORALL ((ET-BE V RELATIONI-STRUCTURE)
*.((V RELATION-STRUCTURE) (LET-BE 52

(32 (NON-EMPTY-SUBSET-OF (NON-EMPTY-SUBSET-OF (U-SET U)))
'.%(U-SET U)) (LET-RE V12

(I (IN-U-SET (RESTRICT-RELATIOI-STRUCTURLE V S2))
(RESTRICT-RELATIOI-STRUCTURE (LET-SE I (Il-U-SET 112))

V (LET-BE S (U-SET U))
S2)))) (NOTE (IS I (IN-U-SET 11)

(IS I (IN-U-SET U)

(DEFTYPE (RIGET-ADJACENFT (X (IN-U-SET R))

CR RELATION-STRUCTURE))
* (RELATED-TO I (GET-RELATION RM)

% %
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(LEMMI (IN-CONTEXT
(FORLL ((V LELATION-STRUCTURE) ((LgT-BF V RELTATION-STRUCTURE)

(I (1N-U-SET W)) (LET-BE I (IN-U-SET W))
y (RxcsT-A, JIcErr I V))) (PUSH-GOnL (IS-EVERY (RIGBT-ADJicENT X W)

(IS Y (13-U-SET W))))(lCOTX (IN-U-SET W)

((SUPPOSE
(EXISTS-SOME (RIGHT-PDJACENT X WM)

(LET-bE Y (RIGHT-ADJACENT I W)
~LET-BE S (U-SET W4))
(LET-BE R (GET-RELATION WM)

-p (NOTE-GOAL))
(NOTE-GOAL))

(DEFTYPE (LEFT-ADIACENT (Y (13-U-SET R))

(R RELATION-STRUCTURE)
(LAMBDA ((X (It-U-SET R));

(IS Y (RIGNT-AIDACENIT I R)

(DEFTYPE (REFLEXIVE-RELAO-ON- (S SET))
* (LAMBDA ((R (RELATIDON09)))

(FOLALL MC (MEMBER-Or S))
(IS I C3ELATK3-TO I R)))))

A (DEFTTPE CIRREFLEXIVE-RELATION-ON (3 SET)
(LAMDA ((ft (RELAION-ON 5))

(FORALL M( (MEMBER-OF W)
(NOT (IS I (RELATED-TO I R))))))

(DEF TYP E (SYKTIC-RELATIOU-ON (S SET)
(LAMBDA ((R (RELATION-0N S))

(FOlAlL ((I (MEMBER-OF S))

Cy (NMEu-Ov 5))
(1FF (1S 1 (RELATE-TO Y )

(1S Y (RILATED-TO I R))))))

(DEFTYPE (ANTISYMMMTIC-RELATION-OU (S SET)
(L AMBDA ((R (RELATION-ON S))

(F03.ALL M( (M EMB ER-OF 9))
(Y (OTHER-MEMBER S W)

(NOT (AND (IS I (RELATED-TO Y R))
(IS Y (RELATED-TO I R)))))))

(DEFTYPE (TRANSITIVE-RELATION-ON (S SET)
(LAMBDA ((R (kEATION-Ol 5))

(FORALL M( (MEMBER-OF 5))
(Y (RELATED-TO I R))

(IS-EVERY (RELATED-TO Y R) (RELATED-TO I W)))

5%%
.5'.
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(DEFTYPE (EQUIYALENCE-BELATION-ON CS SET))
A (AID-TYPE (SYMMETRIC-RELATIOI-ON 5)

(TRANSITIVE-RELATI ON-ON S)
4\. (REFLEXIVE-REL ATION-ON 5))

(DEFTYPE L')UIVALEUCE-RELATION
(VRITABI.E-AS Rt

CR CFQUTVALENcE-RELATIOI-ON S))
(5 SET))

% -

.4 -~ CDEFTERA CTHE-TOTAL-REIATION-O3 (S SET)
(THE-RUlE M( (MEMBER-OF S))) 5))

(LEMMA (Il-COITEIT
(FORALL (( MOE-EMPTY-SET)) ((ET-BE S El-EMPTY-SET)

'4..(IS (THE-TOTAL-RELATION-Ol S) (LET-BE Rt (THE-TOTAL-RELATION-ON S))
CEQUIVALENCE-ILELATION-OU SW)) (PUSH-OL

A 4 (is R (EQUIVA.LENCE-RELATION-ON )
'V (IN-CONTEXT ((ET-BE I (MEMBER-OF 5))

(NOTE (Is R (REFLEXIVE-R ELA TION-ON 9))

* (IN-CONTEXT ((LET-BK Y (MEMBER-OF 5))
(NOTE (IS R CsrnMrrIC-RELATIoR-ou 5)

(IN-CONTEXT ((Lt-BE T CRELATED-Ta I V))
(NOTE (IS L TRINSITIVE-RELATION-0I )

(Non-GOAL))

(LEMMA C IN-CONTEXT
(FORALL ((LET-SE S NON-EMPTY-SET)

((S NON-EMPTY-SET) (LET-BE I (TIASTIVE-RELATION-ON 5))
(Rt (TRANSITIVE-IELATION-ON 5)) (SUPPOSE

(a> (Is R (IUIEFLEIE-IELATION-CN 5))
(IS I (PunS-GOAL
(IRREFLEXIYE-IIEATIDI-ON 5)) (IS R (AITXSYMIETRXC-RELATION-OI )

(IS I (IN-CONTEXT ((ET-BE I (MER-OF 5))
(AETISYMMETRXC-REL ATION-OIN S))))) (IN-CONYTX

((PSt-GOAL
(FORAL. ((Y (OTHER-MEMBEI S X)))

(NOT (AID (IS I (RELATED-TO Y R))
'K (IS Y (RELATED-TO I R)))))))

(Il-CONTEXT
4I*. ((SUPPOSE

(EXISTS-SOnE (OTHER-MEMBER S W))
;the above suppasition constrainsx
;and prevents full generalization
(LET-BE Y (OTHER-MEMBER S XM)

(NOTE (NOT (AND (IS I (RELATED-TO Y R))

~ (NTE-GAL)) (IS Y (RELATED-TO X Rt)))))
(NOTE-GOL)

(NOTE-GOL)

0 0
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A.5 Partial Orders and Zorn's Lemma

;4

A partial order is defined here as a transitive irreflexive relation (every
such relation is also antisymmetric). A poset (partially ordered set) is a
relation structure whose relation is a partial order on the underlying set.
Given a poset p and an element x of the underlying set of p the types
(LESS-THAN x p) and (LESS-OR-EQUAL-TO x 1,) are defined in the obvi-

* ous way. A total order is a partial order in which every two elements are
ordered.

Let p be a poset, s a subset of the underlying set of p, and x an element
of the underlying set of p. We say that x is a maximial element of a if it is
an element of s and no element of s is greater than x. We say that x is the
greatest member of s if it is a member of s and all members of s are less than
or equal to x. We say that z is an upper bound of s is every member of s is
less than or equal to x. The notions of minimal member, least member, and

*. -t lower bound are defined similarly. We say that x is a least upper bound of
-s if it is the least member of the set of all upper bounds of s; greatest lower

bounds are defined similarly.

A chain in a poset p is a subset s of p which is totally ordered by order
relation of p. An inductive order is a partial order in which every chain has
an upper bound. Zorn's lemma states *that if p is an inductive order and x

0 is a member of the underlying set of p then there is a maximal member of p
N. which is greater than or equal to x. Zorn's lemma can be proven from the

axiom of choice but we take it as an axiom.

(DEFTYPE (PATTIAL-ORDfER-oI (S SET))
(AID-TYPE (TIANSITXVE-RELATION-01 s)

(IRREILEKIVE-RELATIOI-au S)))

be) (DEFTEhR (THE-EIIPTY-RELLTIDI-ON (S SET))
(TIE-RULE (I (KME ER-OF S)))

_ . ?ETHE-EPT'Y-SER))

.,%

*).j,~

a-.'>



2S~3APPEN'DT-' -A. TIlE STONE REPRESEN TATIOX THEOREMI

(LEMMA (IN-CNTFTL?
(FORILL ccs 10-MPTY-SET) MLEr-BE S NON-EMPTY-SET)

(IS (T8-ERPTY-RELITION-ON S) (LET-BE R CTHE-EMPTY-ELLII-01 S))
(PARTIAL-ORDER-01 S)))) (PUSH-GOAL (IS R (PA.RTILL-ORDER-OI S),))

A (IN-CONT-E X (MEMBER-OF 3))

(I-CONTEXT
((LET-BE S2 (U'f--ULE Rt M)

* (NOTE (IS R (k!IATION-ON S))))
eNOTE-GOAL))

(DEFTYPE POSET
(LkMBDA ((S RL-TA'ION-STRULTUE))

(IS (OET-RELATIOI S)

(PIKTIAL-OHDER-ONF (U-SET S)))))

-(LEMMA (EXISTS-SOME PaSET)) (IN-CONTEXT

((ET-BE S NON-EMPT-SET)
V (LET-BE R. (PARTIAL-O1.DEI-ON S))

(LET-BE V (MAIE-RELATION-STRUCrJAE R S)
(NOTE (EXISTS-SORE PosET)'i)

(DEFTYPE (LESS-THAN UI (IN-U-SKT V)) (V POSET))
J.'. (LEFT-ADJACEN? I W))

A

r e ~ -p
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(LEMMA CIx-COrrTX
-, (FORALL ((P POSET) ((LET-BE P POSET)

(I (IN-U-SET P)) (LET-DE I C;.-U-SET P))
(MOT (IS I

, (LESS-THA X P))))) (IN-CONTEXT
C (PUSH -GOAL

(LEM M (NOT (IS I (LESS-THAN I P)))

(FORALL ((? POSET) (LET-BE R (GET-RELATIOM p))
(I (IN-U-SET P)) (LET-BE S (U-SET P)))

4. (Y (IN-U-SET P))) (MOTE-GO'L))

(AID (IN-CONTEXT
S(IS I CLET-BE Y (IN-U-SET P))

(LESS-THAIN Y P)) (PUSH-GOAL

(IS Y ClOT
(LESS-THANI p)))))) (AIND (IS I (LESS-THAN I P))(LES A I(IS 

Y (LESS-TEAl I P))))
(LEMMA (LET-BE R (GET-RELATION P))

-. (FORAILL (P POSET) (LET-BE S (U-SET P)))
_( (IN-U-SET P)) (NOTE-GOAL))
9'. CI' CLE--TIU N P)

( (LESS-THAN I P)) (IN-C01
((IS (LESS-THU I P M))) ((PUSH-GOAL(IS ZLS(FORWLL ((Y (LESS-TANI X P)))

(IS-EVERY (LESS-THU T P)
--.- (LESS-THU I P)))))

(IN-CONTEXT- ( (SUPPOSE

(EXISTS-SOME (LESS-THAI X P))
(LET-BE Y (LESS-THAN I P))

(I-COTIEXT
((SUPPOSE

(EXIST3-SauH (LESS-THA Y P))
(LET-BE Z (LESS-ThAio I Mb
(LET-BE I (GET-RELATION P)
(LEI-BE £ (U-SET P)))

(IOT (IS-STE'l CWnS-TAI I P)

(LESS-TsA X ))))
(NOTE (IS-EVERY (LESS-THAN Y P)

) (LESS-TAM I Pb)C vOT-oOak.))
a).. (NOTE-GOALD)

(DEFTyPE (GIEATER-TIAN (U (IN-U-SET V)) (V POSET))
*(RIONT-ADJACENT I W))

-.
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(LEMMA (is-CONTEXT

(FORALL ((P POSE?) ((ET-89 P POSE?)r
(I (IN-U-SET P)) (LET-BEEI (IN-U-SET P))
(Y (GREATER-ThAN I PM) (PUSH-GOAL

(IS I (LESS- -TA1 Y P)))) (FDNALL MC (GREATER-TRAI X PM)
(IS I (LESS-THUN Y P))

(IN-CONTEXI

*(EXSS-SOME (GREATER-THAE I P)))
(LET-BE Y (GREATER-ThAN I P))
(LET-BE R (GET-RELATIGI P))
(LET-BE S (U-SET P))M

(NOTE-GOAL))
(laTE-GOAL))

(DEFTYPE (LESS-Ok-EQUAL-TO (X (Il-U-SE? VI)) (V POSE?))
A (01-TYPE (LESS-TEAK I W) (EQUAL-TO 1)))

4(LEMMA (IN-CONFTEXT
(FORALL ((P POSET) ((ET-BE P POSE?)

*( (IN-U-SET P)) (LET-BE I (IN-U-SET P))
(Y1 UXSS-OR-EQUAL-TO X M)) (LET-RE Y (LESS -OR-EQUAL-TO X P)

(IS Y (Il-U-SET P)))) (IN-CONTEXT

(LMM (POSE-GOAL (IS Y (IN-U-SET P))))
(LEMMA (IN-CONTEXT

(FO2ALL ((P POSE?) ((SUPPOSE (IS Y (LESS-TIAN I P))))
-'a( (IN-U-SET P) (NOTE-GOAL))

(Y (LESS-OR-EQUAL-TO I P)) (NOTE-onL))
(Z (LESS-al-EQUAL-TO T P))) (INf-CONTEXT

(IS Z (LESS-OR-EQUAL-TO I P)) ((ET-BE Z (LESS-OR-EQUAL-TO Y PD a

(puss-GOAL
* (IS Z (LESS-Cl-EQUAL-TO I P),))-, (IN-CONTEXT ((SUPPOSE (a Y M))

(Nm-OAL))

((SUPPOSE (is y (LESS-THAN X P)))
(IN-CoNT~aT

((SUPPOSE (IS Z (LESS-THAU Y P)
2 (NOTE-GOAL))

(NOTE-GOAL))
(NOTE-GOAL))

4(LEMMA (IN-CONTEXT
(FORALL ((P POSE?) ((ET-BE P POSE?)4

(I (Il-U-SET F)) (LET-BE I (IN-U-SET P))
(Y (LESS-OR-EQUAL-TO I PM) (LET-BE Y (LESS-CR-EQUAL-TO X P))

(IS I15 (LESS-OR-EQUAL-TO Y P) (SUPPOSE
Is Y )))) (IS I (LESS-OR-EQUAL-TO Y P)

(NOTE (- I M))

(DEFTIPE (GRI:TER-OR-EQUAL-TO (I (INf-U-SET W)
(V POSE?)

(OR-TrE (GREATER-THIN I V) (EQUAL-TO IM)

4.r

Ie 1. ro.f W

'S%

.4 'N.~
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(LEMMA (I-CONTEXT
*(FORILL ((LET-BE P POSET)

((P POSET) (LET-BE X (TNF-U-SET P))
(X (lu-U-SET P)) (LET-BE T (GREATElR-Ol-EQUA:.-TO I P))
(Y (GREATER-OR-EQUAL-TO I P))) (PUSH-GO&L (IS Y (II-J-SET P))))

(IS T (IN-ti-SET 7)))) (If-CONTEXT
((SUPPOSE (IS Y (GREATER-THANI P))

(NOTE-GOAL))

kIOTE-GDAL2)

(LEM (IN-COr"XIT (OLET-BE P POSET)
(FORALL ((P FUSET) LET-BE I (Il-U-SET P))

(Y II-U-SET P)) (LET-BE Y (lu-U-SET P)))

(I (Il-U-SET P))) (IN-COITE.:T
C>(IS Y Ck (SUPPOSE

(LESS-OI-EQUAL-TO X P)) (IS Y (LESS-O-EQUAL-TO I P)))
(IS i (PUSH-GOAL

(GREATER-OR-EQUAL-TO Y P)))r) (IS I (GREATER-CR-EQUAL-TO Y P))))

CLE~qXA(IN-CONTEXT
(LEMMA((SUPPOSE (IS Y (LESS-ThAN I P))))4(FORALL ((P POSET) (NOTE-GOAL))

(V (1i-U-SET P)) (OEGA)

C>(is Y ((SUPPOSE
*(GREATER-Cl-EQUAL-TO I P)) (I Y (GREATER-OR-EQUAL-TO I P)))

(IS : (PUSE-GOAL
(LESS -OR-EQUALL-To YP)))))

(IS X (LESS-Cl-EQUAL-TO Y P))))
(IN-CONTEXT

((SUPPOSE

(IS Y :GREATER-TOS I P))))
(NOTE-GOAL))

(NOTE-GOAL)))

(DEFTERM (RESTRICT-ORrER
(a POSET)
(S (Not-EMPTY-SUBSET-OF

(U-SE 0))))

(RESTRICT-REATION-STRU(nJRE 0 S))
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(LDINA(IN-CONTET

RALL ((LET-BE 51 NON-EMPTY-SET%
((S NO-EMPTY-SET) (LET-BE I (TRANSITIVE-W.ATIO-ON0 SW)

(I (TILANSITIVE-RELATION-02 Si) (LET-BE S2 (SUBSET-OF SW)
(S2 (SUMET-OF St')) (LET-BE 12 (BESTRICT-PELATION &I S2))

(IS (RESTTCT-IELATION I 52) (PUSR-COAIL

(TIES ITIVE-BELAT 10- Of S2)))) (IS 12 (TU~NS!TIVE-RELITIOV-01 S2))))

(XN1-CONTEXT
((SUPPOSE

(EXISTS-SOFG (KERBER-OF S2)))

(LET-BE X (REMBER-OF S2)))
(IN-CONT

((PUSH-GO~L.

(FORALL ((Y (MEATED-TO X R2)1)
(IS-EVERY (MELTED-TO Y R2)

(3Z.ATED-TO I R2)))))
(IN-CONTEXT ((SUPPOSE

(EXISTS-SOME
(RELATED-TO I R2)))

(LET-BE Y (RELATED-TO 1 &2)))

(lu-CONTEXT
* ((PUSH-GOAL

(IS-EVERY (RELAIED-TO Y R2)
(RELATED-TO I R2))))

(IN-CONTEXT
((SUPPOSE

(EXISTS-SOME

(RELATED-TO Y R2)))
(LET-BE Z (RELATED-To Y R2)))

(NOTE-GOAL))
(NOTE-GOAL))

(NOTE-OAL.))
(1OTE-GOAD)

(NOTE-COAL))
(NOTE-GOAL))

(LEMA (IN-CaNTEr!
(FORALL1 (CS SET)) ((ET-BE S SET)

(EIISTS-SOME (LET-BE It (THE-EMPTY-BELATION-Ofl 5)))
(INREFLEXIYE-3,ELATION-ON S)))) (NOTE

(EXISTS-SONE
(IRREFLEXIVE-RELATION-ON1 )

(LEMMA (11-GONTEXT
(FORALL ((ET-BE St NON-EmPT-SET)

* ((51 NON-ERM-SET) (LET-B6R1XI (IRIEFLEXIVE-RFL.ATION-01 SW)
(R1 (IREFLEXIYE-ELArION-0N S1)) (LET-BE S2 (SUBSET-OF 51))
(S2 (SUBSET-OF Si))) (LET-BE 12 (RESTICT-RELATIOV R1 S2))

(IS (IESTXICT-.ELATIOR R1 S2) (PUSN-GOAL

(IURFLEIE-RITION-ON S2)))) (1S 12 (IREFLEIVE-RELATN-0N S2),))

(EXISTS-SORE (IMMER-OF S2)))
(LET-BE I (MEMIBERt-OF S2)))

(NOTE-GOAL))
(NOTE-GOAL))

4,P'e.,...

% %%

6%



(LENA (1W-CON T
(TRAL!. ((p FOSET) ((LET-BE P POSET)

N: (52 (NOZ-ERPTT-SUBSET-OP (LET-BE 52 (PN-UPTY-SUBSET-OF (U-SET F)))

(U-SET P?))' (LET-BE P2 (IESTICT-ORDER P S2)))
c:s (RES TICT-OR1IDEA P 52) (IN-CON T

?2sE-,,((LET-LE SI (U-SET P'))

- . ~'J A(LET-BE RI (GET-RELATION P))

- ($Pcs~t(LET-BE R2 (GET-RELITICI P2)))
(NOTE (IS P2 P05EV))

($2(NC-EPTTSbSETCF(IN-coITUSf ( (LET-BE I IN-!U-SET P2) )
(U-SET P))) LE.T-BET (IN-U-SET P2)))

- (1(lI--SET(NOTE (IS Z (Il-U-SET ?)))
(RESTRIaT-ORnEa P S2)))) (NOTE

(IS I (1-U-SET p))' (1FF

(LE!'LH (1S 1 (LESS-THAIN T P2))

(FOflLL ((P POSES) (IS 1 (LESS-TRAM T Pl)))

- (S2 (IOI- EWPTT-SUBSET-OF
(U-SET P)))

CT (iN-U SET
* (RLESTRICT-ORER, P 52)))

UI (Il-U-SET
(RESTIICT-ORDER P 52))))

(LESS-fl Y
w (BESTRICT-ORLER P S2)))

(is I
(LESS-THAN Y P)),))

(LECIA (IN-CONTEXT
(FORA.LL ((P POSET) ((ET-BE P POSE?)

(52 (NON-EJIPTT-SUBS-OF (LET-BE 52 (30N-EKPT-SUBSET-OF
(U-SET F))) (U-SET P)))

CT (IN-u-sET (LET-BE n2 cuzsxuIcr-oinn P 52)))
-' (RESTNICT-ORDfl P S2)))

(I ON1-U-SET(I-CTT
(RESTRICT-ORDER P $2)))) ((ET-DE I (11-U-SET P2))
"IFF (LET-BE V (IN-'1-SET P2)))

(IS (1FFO-CONTEXT

(LESS-Ct-EQUAL-TO T (URGA

(RLESTKICT- ORDER P S2))) (1FF (IS I (LESS-Ot-EQUAL-TO 1 P2))

(IS I (IS I ( LESS-Oft-EQUAL-TO T P)))))

(LESS-Oft-EQUA.L-TO T P))))) (CONTE

(IS I (LE-SS-Ok-EQUAL-TO Y P2))))
(IN-CONTET ((SUPPOSE (- X Y)))
(NOTE-GOAL))

(NOTE-GOAL))
(IN-CONTEXT

((SUPPOSE
V (IS I (LESS-Ct-EQUAL-TO T P))))

(IN1-COrTEX? ((UPPOSE C-I Y)))
(NOTE-GOAL)

(NO0TE-GOAL))
(NTE-tiDAL)

P .. p '
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(DEFTYPE (TOTIL-oRDRn-al (S Sn))
(LiaNDA ((R (PARTflL-ORDER-0U 5 ))

CFr1113 MC (MEMBER-aF 5))
CY (MEMBER-aF 5)))

(OR (- XY)
(IS I (RELATED-TO Y R))

(IS Y (RELk7PD-TO I R))))

(DEFTYPE TOTALLY-ORDERED-SET
(LAMBDA ((S RELATIDI-S~TRUCVRE))

(IS (GET-RELATION 5)
(TOTAL-ORDER-VN (U-SET 5))

(LEMMA (EXISTS-SOME (11-CONTEXT
TOT tLLY-OlLDERLED-Srr) ((ET-DE S SINOLETUN-1,ET)

(LET-BE ft (TKE-EMPTY-BELATION-ON S))
(LET-BE U (xNLE-RELATIO-SThUaTuu R 5))

-~~ (NOTE (EXISTS-SORE TOTALLY-ORDERED -SET)

a'(LEMMA (Il-CONTEXT

a' FORALL (Of TO ALLY-ORLDEREO-SET)) ((ET-BE W rOTALLf-ORDERED-SET)

(IS U POSET)) (PUSS-GOAL (IS W POSET)

(LET-BE R (GET-RELATION ))
(LET-RE S (U-SET V))

(NOTE-GOAL))

(LEMMA (11-CONTEXT
(FORALL (OW TOTALLY-ORDERLEO-SET) ((ET-BE V TOT.ILLY-ORDERED-SET)

(I (lU-U-SET 10) (LET-BE I (IN-U-SET W)
(y (Il-U-SET WM) (LET-BE Y (11-U-SET W0

(OR (IS I (LET-BE I (GET-RELATION ))
(LESS- OR-EQUAL-TO V V)) (LET-BE S CU-SET WM)

(IS Y (IN-CONTEXT
(LESS-OR-EQUAL-TO I V))))) ((NIBS-GulL

N (01 (Is 1 (LESS-Ok-EQUAL-TO Y V))
(IS Y (LESS-OR-EQUAL-TO I W)))

(IN-CONTEXT ((SUPPOSE (a I Y))
(NOTE-GOAL))

(U1-CONTEXT ((SUPPOSE (IS I (LESS-TEAI Y U)
(NOTE-GOAL))

* (NonE-GOAL)))

(DEPTYfPE (NINIMAL-ELENUT-O? (U POSET))
(LAMBDA M( (IN-U-BET WM)

a (NOT 'EXISTS-SOME (LESS-THAN I )M))

(DEPTYPE (MAEIMAL-EI2XENT-OF CV POSET)
(LAMBDA M( (Il-U-SET U))
(NOT (EXI3Ss-SOM (GREATER-TRAM I V)))))

(nsniYPS (U7PER-BOUNID-OF (S (SUBSET-CE (U-SET U))

(U POSET))
(LAMBDA ((A (IN-U-SET WM)

a (IS-EVERY (MEMBER-OF S)
£ (LESS-Oft-EQUAL-TO A V))))
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CLFNNA (1-CONTEXT
(FORALL ((w POSET) ((LET-BE V POSET)

(I (IN-U-SET W) (LET-BE I (IN-U-SET W)
(Y (IN-U-SET W)) (LET-BE Y (1N-U-SET W)

(PUSH-GOIL
t!S-EVErY (IS-EVERY
(AND-TYPE (AID-TYPE (GREATER-OR-EQULL-TO X V)
(GREATER-OR-EQUAL-TO I V) (GREATER-OR-EQUAL-TO Y W))
(GREITEROR-EQUAL-TD Y ) (UPPER-BOUND-OF (MAKE-SET X Y) W))))

UPPER-POLID-OF (MAKRE-SET I Y)
H)))) (IN-CONTEXT

((SUPPOSE

(EXISTS-SOME
(AND-TYPE

(GRLEATER-OR-EQ UAL- TO I W)
(GREATER-OR-EQUAL-TO Y W))))

(LET-BE Z (AID-TYPE
(GREATER-OR-EQUAL-TO I W)
(GREATER- OR-EQUAL-TO Y W))))

(IN-CONTEXT
((PUbif-OAL

* (IS z
(UPPER-BOUID-OF (MAKE-SET I Y) H))))

(IN-CONTEXT ((ET-BE 5 (MAKE-SET I Y)"

(LET-BE Z2 (MEMBER-OF S)))
(IN-CONTEXT

((PUSH-GOIl.
(is Z (GREATER-OR-EQUAL-TO Z2 W))))

(IN-COITEXT ((SUPPOSE Z= 2 M)

(NOTE-GOAL))

(NOTE-GOAL-))
(NOTE-GOAL)

(NOTE-GOAL))

(NOTE-GOAL))

(NOTE-GOAL))

(L M A (IN-CONTEXT

(FORALL ((W POSET) ((ET-BE V POSE!)
(Y (IN-U-SET W)) (LET-BE A (IN-U-SET W)
UI (IN-U-SET WM) (LET-BE Y (IN-U-SET W)

(IS-EVERY (LET-BE S (MAKE-SET I Y))
(UPPER-BOUND-OF (MAKE-SET X Y) H) (PUSH-GOAL

* .h(GREATER-DR-EQUAL-TO X N))) (IS-EVERY (UPPER-BOUND-OF S W)
(GRLEATER-OR-EQUAL-TO I W))))

(IV-CONTEXT

((SUPPOSE
(EXISTS-SOME (UPPER-BOUND-OF S WM)

(LET-BE Z (UPPER-BOUND-OF S W)

(NOTE-GOAL))
(NOTE-GOAL))

'F 1
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(LEMMA (IN-CONFTEXT

(FOP.ALL ((P POSET) ((ET-BE P POSIET)

(I (IN-U-SET P)) (LET-BE 5 (sUBsET-oF (U-SET PM)

A.(S (SUBSET-OF (U-SET P)))) (LET-BE X (1N-U-SET P))

(IS-EVERY (PUSH-GOAL

(IND-TYPE (IS-EVERY

(G REITER- OR- EQUAL -To X P) (AND-TYPE (GREATER-OR-EQUAL-TO IP

(UPPER-BOUND-OF (UPPER-BOUND-OF (INSERT X S) P))))

-(INSERT I S) (IN-CONTEXT

PM)) ((SUPPOSE

(EXISTS-SOME
(ANO-TYPE (GREATER- OR- EQUAL-ID X P)

(UPPER-BOUND-OF S P))))

(LET-BE Y
(AND-TYPE (GREATER-OR-EQUAL-TO I P)

(UPPER-BOUND-OF 5 P))))

(IN-CONTEXT
((PUSH-GOAL

(IS Y (UPPER-BOUID-OF (INSERT I S) P))))
* (IN-CONITEXT MLET-BE S2~ (INSERT X S))

(LET-BE Z (MEMBE.-OF S2)))

(IN-CONTEXT
((PUSH-GOAL

(IS Y (GREATER-OR-EQUAL-TO Z P))))
(IN-CONTEXT ((SUPPOSE (AZ I))

(W0TE-GOAL))
(NOTE-GOAL))

(NOTE-GOAL))
(NOTE-GOAL))

(NOTE-GOAL))

(DEFTYPE (LOVEI.-BOUN-OF (S (SUBSET-OF (U-SET V))

(LAMBDA ((A (IN-U-SET W)PSE)

(IS-EVERY (MEMBER-OF 5) (GREITU-OUR-EQUAL-TO A W))))

w% b W.
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'at.(LEMMA (I-CONTEXT

4%'(FORALL ((V POSE!) ((LET-SE V POSE?)
(X (IN-U-SET W)) (LET-BE X (IN-U-SET W))
(Y (IN-U-SET WM) (LET-BE Y (IN-U-SET W))

(IS-EVERY (PUSH-GOAL
(AND-TYPE (IS-EVERY

ILESS-Oft-EQUAL-To I W) (AND-TYPE (LESS-Oft-EQUAL-TO I W)
(LESS-Oft-EQUAL-To Y W) (LESS-O0R-EQUAL-To Y W))

N'(LOVER-BOURO-OF (LOWER-SOUND-OF
(MAKE-SET I Y) (MAKE-SET X Y)

a., ~W))))Vf)
V (IN-CONTEXT

((SUPPOSE
(EXISTS-SOME

:9 (AND-TYPE

V ~(LESS-OR-EQUAL-TO X W)
% (LESS-Oft-EQUAL-TO Y WM)

(LET-BE Z (AD-TYPE
(LESS:OR-EQUAL:TO X V)

(LES-OREQUA-TOY U))))
* (IN-CONTEXT

((PUSH-GOAL

(IS 1
(LOVER-BOUND-orF

(MAKE-SET X Y)

(IN-CONTEXT ((ET-BE S (RAE-SET I Y))
(LET-BE Z2 (KRER-OF S))

(IN1-CONTnrT
V. ((PUSH-GOAL

(IS Z (LESS-Ot-EQUAL-TO Z2 U))))
(IN-Calm!X ((SUPPOSE (a Z2 I))

(NOnE-GOAL))
(ROEOlo))

(OTE-GOAL))
(NOTE-GOAL))

(OTE-GOAL))

* ,(LEMMA (IN-CONTnrT
(FORALL ((V POSE!) ((ET-UK V POSET)

* (y (IN-U-SET 10) (LET-BE I (IN-U-SET V)
* U (IN-U-SET U)) (LET-BE Y (IN-U-SET I))

(IS-EVERY (LET-BE S (RAKE-SET X 1))
(LOVER-BOUND-OF (RAKE-SET I Y) W) (PUSS-GOAL
(LESS-OR-EqULL-TO I U))) (IS-EVERY (LOWER-BOUND-OF S W)

(LESS-OR-EQUAL-TO I V))))

(IN-CONTEXT
((SUPPOSE

(EXISTS-SORE (LOVER-BOUND-OF S W)
(LET-BE Z (LOVER-BOUND-OF S U))

(NOTE-GOAL))

(ROTE-GOAL))
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(LEM (IN-CONTEXT

(FORALL (( POSE!) ((ET-BK P POSET)

(I (IN-u-SET P)) (LET-BE S (SUBSET-OP (U-SET P))
(S (SUBSET-OF (U-SET P)))) (LET-SBE I (IN-U-SET P))

(IS-EVERY (PUSH-COAL
(AND-TYPE (IS-EVERY

(LESS-OX-EQUAL-TO I P) CAD-TYPE (LESS-OR-EQUAL-TO I P)
(LOWER-BOUND-OF S P)) (LOWER-BOUND-OF S P))

C* LCWER-BOUUD-OF (LOWER-faUmn-aF (INSERLT I S) P))))
(INSERT I S) (IN-CONTEXT
P)))) ((SUPPOSE

(EXISTS-SORE
(AID-TYPE (LESS-OR-EQUAL-TO I P)

(LOWER-BOUND-OF S P))
(LET-BE Y

(AID-TYPE (LESS -OR-EQUAL-TO I P)
.Nt~ (LOVER-SOUND-OF S P))))

(IN-CONTEXT
((PUSH-GOAL

(IS Y (LOVER-BOUND-OF (INSERT I S) P)
(IN-CONTEXT ((ET-BE 52 (INSERT X S))

- (LET-BE Z (MEMER-OF 52))

(U-CONTEXT
((PUSH-GOAL

(IS Y (LESS-OR-EQUAL-TO Z P))))

(IN1-CONTEXT ((SUPPOSE (Z IM))

(NOTE-GOAL))
(NOTE-GOAL))

(NOTE-GOAL))

(NOTE-GOAL)
(NOTE-GOL)

(DEFTTPE (LEAST-WEMBER-OF (S (SUBSET-OF CU-SET I))
(V POSET)

(LAMBDA M( (MZENSEL-OF 5))
(IS-EVLIT (MEMBER-OF 5)

(OREATBI-OR-EQUAL-TO X V))))

44
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-~(LEMMA (IN-CONTEXT,

.4(FORALL ((W POSET) ((LET-BE W POSET)
(S (SUBSET-OF-U-SET H)) (LET-BE S (SUBSET-OF-U-SET WM)

*4*(IS-EVERY (LEAST-MEMBER-OF S W) (IN-CONTEXT

-(IN-U-SET W)))) ((PUSH-GOAL
(IS-EVERY (LEAST-MEMBER-OF Q. W)

(LEMMA UIN-u-SET Wi)))
.4.'.(FORALL ((W POSET) (N-CONTEXT

(S (SUBSET-OF (U-SET W)))) ((SUPPOSE
(AT-MOST-ONE (EXISTS-SOME

* ~~~~~(LEAST-MEMBER-OF S W) LATMME r H)
(LAT4EBRors.

* (LET-BE I (LEAST-HEMBER-OF S W))
(LET-BE S (U-SET WM)

(NOTE GOAL))
(NOTE-GOAiL))

(IN-CONTEXT
* ((PUSH-GO~L.

(AT-MOST-ONE (LEAST-MEMBER-OF S V))))
(If-CONTEXT

((SUPPOSE
(EXISTS-SOME (LEAST-MEMBER-OF S WM)

(LET-BE I (LEAST-MEMBER-OF S V))
(LET-BE Y (LEAST-MEMBER-OF S W))

(NOTE-GOAL))
(NOTE-GOAL))

(DEFTYPE (GREATEST-MEMBER-OF (S (SUBSET-OF (U-SET H))
(9 POSET))

(LAMBDA M( (MEMBER-OF 5))
(IS-EVERT (MEMBER-OF 5)%

(LESS-DI-EQUAL-TO I V))))
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(LEMO (Is-CONTEXT
(FORALL M( POSET) ((ET-BE W POSE?)

(S (SUBSET-OF-U-SET W)) (LET-BE 5 (SUBSET-CF-U-SET iiM)
(X (GREITEST-NEEER-OF S VM) (IN-CONTEXT

(IS I (Il-U-SET V)))) ((PUSH-GOAL
(IS-EVERY (GREATEST-MENBER-OF 5 W)

(FORILL ((W POSE?) (Il-CONTEXT
*(S (SUBSET-OF (U-SET WM ((SUPPOSE

(AT-HOST-ONE )))(EXISTS-SOME
(GREITEST- M BER-OF 3 M (GREATEST-MEMBER-OF S WM)

(LET-BE I (GREATEST-MEMBER-OF S W))
(LET-BE S (U-SET W)M

(NOTE-GOAL))
(NOTE-GOAL))

(IN-CONTEXT

.P, ((PUSH-G.OAL
(AT-NOST-ONE (GREATEST-REMBER-OF S W))))

(Il-COSTEXT
"'U ((SUPPOSE

(EXISTS-SOME
* (GREITEST-IEM ER-OF S WM)

(LET-BE X (GREATEST-HEMBER-OF S U))
(LET-BE Y (GREATEST-HEMBER-OF 5 WM)

* (NOTE-GOL)
(1071-GOIL))

(DEFTYPE (LEAST-UPPER-BOUND-OF (S (SUBSET-OF (U-SET V))
(V POSE?)

(LEAST-M EMB ER-OP
'I". (THE-SET-OF-ILL (UPPER-BOUUD-OF S W)) W)

d,

k %

y'.
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(LEMMA (IN-CONTEXT
(FORALL ((W POSET) ((LET-BE V POSET)

(S (SUBSET-OF (U-SET W)))) (LET-BE S (SUBSET-OF (U-SET V)))
(IS (TEE-SET-OF-ALL (LET-BE 52 (THE-SET-OF-ALLL

(UPPER-BOUND-OF S W)) (UPPER-BOUND-OF W ))))
(SUBSET-OF (U-SET H))))) (IN-CONTEXT ((LET-BE 53 (U-SET W))

(PUSH-GOAL (IS S2 (SUBSET-OF S3))))
(LEMMA (IN-CONTEXT ((SUPPOSE

(FORALL ((H POSET) (EXISTS-SOME (MEMBER-OF S2)))
CS (SUBSET-OF (U-SET W)))) (LET-BE I (MEMBER-OF S2)))

(AT-MOST-ONE (NOTE-GOAL)
* ~~~(LEAST-UPPER-BOUIO-OF S ii)))) (OEGA)

(LEMMA (NOTE (AT-HOST-ONE (LEAST-UPPZR-BOUND-OF S W)))
(FORALL

((U POSET) (IN-CONTEXT

(S (SUBSET-OF (U-SET H))) (tPUSI-GOAL
(IS (LEAST-UPPER-BOUND-OF S V))) (IS-EVERY (LEAST-UPPER-BOUND-OF S V)
IS (UPPER-BOUND-OF S V)))) (UPPER-BOUND-OF S W))))

(IN-CONTEXT
(LEMMA ((SUPPOSE

(FORALL ((V POSET) (EXISTS-SOME
(S (SUBSET-OF (U-SET U)))) (LEAST-UPPERt-BOUNFD-OF S W)))

('> EXITS-SRE LET-BE X (LEAST-UPPER-BOUNID-OF S W)))
UPPER-BOUND-OF S ) (NOTE-GOAL))

(FOIALL (OEGW
((I (UPPER-BOUND-OF S W))) (OEGA)

(.> (IN-CONTEXT
(IS-EVERY ((SUPPOSE
(UPPER-BOURD-OF S V) (EXISTS-SORE (UPPER-BOUND-OF S V)))
(GREATER-OR-EQUAL-TO X H)) (LET-BE X (UPPER-BOUND-OF 5 H))

(IS X (SUPPOSE

(LEAST-UPPER-BOUND-OF S (IS-EYERY (UPPER-BouNrD-OF s v)
V))))))) (GREATER-OR-EQUAL-To I V))))

(LEMMA(NOTE (IS X (LEAST-UPPER-BOUND-OF S H))))

(FORALL ((W POSE?) (IN-CONTEXT
(5 (SUBSET-OF (U-SET V)))) ((SUPPOSE

C>(EXISTS-SOME (EXISTS-SOME
(LEAST-UPPER-BOUND-OF S W)) (LEAST-UPPEIL-BOUN-OF S W))

(FORALL (LET-BE X (LEAST-UPPER-BOUND-OF S V))
((Y (IJPPE1-BOUND-OF S V))) (LET-BE Y (UPPER-BOUND-OF S W)))

(IS-EVERT (NOTE (IS X (LESS-OR-EQUAL-TO T V)))))
(LEAST-UPPER-BOUND-OF S W)
(LESS-OR-EQUAL-TO Y 9))))))
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(tERRAIN-CONTET

(FORALL ((U POSE!) ( (EXIzTV-POSE)
St.aU (K (I-U-SET V)) (LT- E I (I-UP-T D- S V))

(Y (IN-U-ST W))) (LET-BE Z I--E )
(ATROY-N(TBE S(REAKE-SPE -ONDO S W)))

(LEAST-UPPE-BOUID-OF M TB 2(PE-ON-FSW)
(AKE-SET I Y (NOTE (RSY-ONESSO-QL OZ )))

U)))LL (LEASY-uPER-aoUX-OF S U)
3~~~PuM-~ In (I-CNTr

'-CTH (ISET U)))(LESTIJPEXBO D-F SU)

(L.> (LET-az ZO Z

D(TEE (LEAST-UPPER-BOUND-OP S U)))
S (SUBSET-OF U-CONTEXT)

At (LE~~~sT-UPPER-BOUNDTES-F(LE-E 2(UPR-ONDO 51)
.4 (RAKE-SE! I ~~~T) NOE ISK LES-R-QUL-O 2 )))

(FOAL (12(UPPER-UND-O )

* V))

V~ NE (LAS-PP.-ONDO
(RAKE-SET I T
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1.1~(LEMKA (I-CONTEXT
A(FoRALL ((W P05EV) ((ET-BE V 'OQET'

(S (SUJBSET-OF U-SET V0))) (LET-BE S (SJ$E 3 (u-SET WM)
(IS (THE-SET-O-ALL (LET-BE S2 (TIQ"5L-CF-ALL

(LOWER-BOUNDO 5 W)) (LOWER-BOUND-OF S W))))
(SUBSET-Or (U-SET W))))) (:1-CONTEXT ((ET-BE S3 (U-SET U))

(PUSH-GOAL (IS 52 (SUBSET-OF S3))))
-~(LEMMA1 (U1-CONTEXT ((SUPPaSE

(FORALL (( OE) EIT-OM KMERO 2)-r (~~~~~S (SUBSET-OF (U-SET WMEIT-SM)MMERO 2)
(AT-MOST-ONE (LET-BE I (MEMBER-OF S2)))

(GREATEST-LowEa-Bouuo-OF S U)))) (OTE-GOA2')

(LEMYA (NOTE
CFR lLL TM0f-E

((v POSET) (TMo':if-OE -ONOF3 M
(S (SUBSET-OF (U-SnT )) CETS-OERBuaOM )

/( CX GREATEST-LOVER-BOUND-OF S W)M (IN-CONTEXT
(IS I (LOUER-BOUND-OF S WM)) ((PUSH-GOAL

(IS-EVERY (GREATEST-LOVER-BOUND-OF S W)
(LEMMA

W ~~~~(FORALL ((W POSET) (ICNET LVRBUDC ))

*(S (SUBSET-OF (U-SET W)))) (-CONTE
=>(EXISTS-SOME ((SUXPSESSM

(LOVER-BOUED-OF S U)) (GREXTEST-LOVER 3011MB OF 5 9M)
4LU:-BVDO (FORA (LET-BE x 'GRflTEST-L~dfl-CUID -OF S U))

((.O3BUN-FS1) (NOTE-GOAL))

(a> (NOn-GOAL))

(X-.Ou'SR-3OUID-OF S U) (IN-COWTEfl
(LESS-OR-EQUAL-Ta X U)) ((SUPPOSE

(EXIST-SOME CLOVER-BOUND-OF S U))
(is5 1 (LET-BE I 'LOUU-BOUID-OF S U))

* (GREATEST-LOVER-BOUND-OF S
: vV)))))) (IS-EVERY CLOUEI-BOUID-OF S V)

S.')(LEMMA (LESS-al-EQUAL-TO X W))M
(FONALL ((V POSIT) (NOTE (1S 1 CSIEATFST-LOVUI-Bou5D-OF S N)))

cr (SUBSET-OF (U-SET V)) (IN-CONTEXT
C>(EXISTS-SOME %SUPPOSE

a CWETEST-LOVER-BOUND-OF S U)) (EXISTS-SORE
(FORLLi (GREATEST-LOUER-BCUND-OF S U))

UTY (LCUEfRBOUND-OF S W)) (LET-BE I (GREATEST-LOUE.R-BOUND-OF S U))
(IS-EVERY (LET-BE T (LOVER-BOUND-OF S W))

(NOTEROREQALT TI V)GRAERO-EUA-))))))

0~%
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(LEMMA (IN-GOITEX!

(FOMALL ((V POSIT) ((LET-BE V POSE?)
(I (IN-U-SE? V)) (LET-BE X (IN-u-sir U))
(T (IN-U-SE? 10) (LET-BE Y (Il-U-SET V))

CAT-MOST-ONE (LET-BE S (RAKE-SET I TX)
(CftEA',.tST-LOVER-BaUID-OP (NOTE

(MAKE-SrT X Y) (AT-MOST-ONE
U)M) (GREATEST-LOVER-BOUND-OF S WMl

(LEMMA I-OTX
(FOPAL. ((V POSET) (INCONTE

CT (IN-U-SE? U)) (flISTS-SOE
(Y is--SE VM(OXEATEST-LOVER-BOUND-OF 3 10)

(EXISTS-SORE (LET-BE Z
(GRETES-LOER-OUT-OF(TEE (OIEATEST-LOUER-BOUND-OF S )

(RATE-STLIE-BUY) O (IN-CONTEXT

(WK-E I ) (ET-BE 22 (LCVER-BOUND-OF S U)))
U)) (NOTE (IS Z (GUEATEI-OR-EQUAL-TO 22 w))))

V ((22 (LOVER-DOUID-OP
(RAE-SET I Y)

-~ (is (THE
(ONEATEST-LOVER-BOUND-OF

(SAKE-SET ITY)

(GREATER-Wi-EQUAL-TO Z2

(nsrrrnE (GRAIN-IN (P' nOsr))4
(LAMBDA MS (NON-ERPTT-SUISET-CF (U-SET P)

A: (IS (RESTRIT-ORDER P S)

TOTALL-ObdSED-Sl)

(LEMMA (IN-CaNTEr- ((ET-BE P POSiT)
(FORALL ((p POSIT) (LET-UE I (IN-U-SET P))

.4 U (IN-U-SET P)) (LET-BE a (MAIE-SET X))
(IS (RAKE-SET I) (PUSN-Gona (IS a (CHAIN-IN P)

(GRAINl-IN PMl) (LET-BE ((ARAIN (KESTKIGT-OXLDER P 3))
A (LET-IN KU. (OET-IELATION IGHAIND)

(NOTE-GOAL))

(LEMMA (IN-GOITMr ((ET-BE P1 POSIT)
A:(FORALL ((P1 POSEr) (LET-UE C (CullN-IN P1)

(C (CAlI-Il PM) (LET-BE P2 (BESTRIGT-OIDER Pn C)
UI (MEMBER-OF C)) (LET-BE X CEERE-OF 0)
(T (EERER-OF CM) (LET-BE I (MEMBER-OF CM)

(OR (IS I (NOTE (01 (IS I (LESS-OR-EQUAL-TO T PM)
(LESS-Ok-EQUAL-TO Y P1) (IS T (LESS-OX-EQUAL-TO X P1))

* (LESS-OR-EQUAL-TO I P1))

.14 1-W
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S(DEFTYPEINUTV-RE
(LAMBDA ((I POSET))

CFORALL ((S ( RAI-I )
(EXISTS-SOME (UPPEX-SCUND-OF S R)))))

;We take Zorn's Lema as an axiom
(AXIOM

(FORALL ((R IIDUCTIVE-ORDER)
UI (Il-U-SET R)))

4., (EXISTS-SOME

(IND-TYPE (NAIIML-LEMEJT-OF R)
(G~tATE-OREqUL-i 1 )))))



* hA 304 APPENDIX A. THE STONE REPRESEXT-XTTON THEOREM

- ~~1.

p.

gJ.

A. ~A

*AA

-I-

~-* A*

'I-
a,

4= .

A~.

as
.5

V
V
,~AA
* Va

V
B..

.4

A ~ - ~ ~ W..4\C ~ V A A ~ A~V ~ VAt.
A~ -~ ~ ~ - V .A. M,$J**6 ~



"A,'

A;. L. TTIC

£

~A.6 Lattices

Aiab

A lattice is a poset in which every pair of elements has both a least upper
~bound and a greatest lower bound. The greatest lower bound and least upper
." bound of two elements are called the meet and join respectively. A complete
-:, lattice is a poset in which every subset of the underlying set has a least upper

bound. We prove that in a complete lattice every subset also has a greatest
lower bound.

*The inclusion order on a family of sets F is a poset whose underlying

set is the family F and where x is less than or equal to y just in case x is
- a subset of y. For any set s the inclusion order on the power set of s is a

complete lattice such that for any subset F of the power set of s the least
0 upper bound and greatest lower bound of F are resectively the union and

intersection over F. The poset which is the inclusion order on the power set
of s is called a power set lattice.

The meet and join functions are monotone in each argument, i.e. increas-
S • ing an argument never decre',ses the meet or join. The meet of x and the

meet of y and z is the greatest lower bound of the set x, y, z and thus the
nmeet function is associative. The join function is similarly associative.

,I'

--V

.1
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(DEFTYPE LATTICE
(LINRI~D ((W POSFT))

FORALL ((I (Il-U-SET W')

(T (Iff-U-SET WM)

(EXISTS-SOME
(LEkST-UPPER-BOIJND-aF (MAKE-SET I ')W) I

(EXISTS-SOME
(GREATEST-LOW_-R-BOUbD-OF (MAKE-SET X Y) W)Y)))

(DEFTERN (JOIN (X (1l-U-SET L)
(Y (Il-U-SET L))

(L LATTICE))

(THE (LEAST-UPPER-BOUND-OF (MAKE-SET I Y) LM)

(IEFTEPJ( (PEET (I (IN-U-SiT W)

CY (Ilf-U-SET L))
(L LATTICE))

(THE (GREATEST-LOVER-BOUUD-aF (KAKE-SET I Y) 0.))

(DEFTYPE COMPLETE -LATTICE
(LAMBDA ( W POSET))

(FORALL (CS (SUBSET-OF (U-SET W))))
(EXISTS-SOME (LEAST-UPPEK-BOUID-OF 3 ))

(LEMM~A (EXISTS-SOME COMPLPTE-LAITTICE)) (Il-CONTEXT
((PUSH-GOAL (EXISTS-SOMF COMPLETE-LITTICE))
(LET-BE S SIIOLETON-SET)

(LET-BE Rt (THE-EMPTY-RELATION-Ol 5))
(LET-BE V (MAKE-RELATION-STRUCTURE Rt S))
(LET-BE 32 (SUBSET-OF (U-SET )

((PUfl-GOAL

(EXISTS-SOM
(LEAST-UPPER-BOUID-OF S2 W))))

(Il-COITET
((SUPPOSE (EXISTS-SOME (MEMBEE-OF S2)))

(LET-BE I (MEMBER-OF 82))
(LET-BE Y (UPPER-BOUTD-OF S2 WM)

(NOTE-GOAL))

(I-CONTEXT
((SUPPOSE

(NOT (EXISTS-SOME (MEMBER-OF S2))))
(LET-BE X (MEMBER-OF 3))

(LET-BE Y (UPPER-BOUID-OP S2 U))

(NOTE-OA)

(NOTE-GOAL))
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(LEMMA (IN-CONTEXT

(FORALL ((V COMPLETE-LATTICE) ((LET-BE W COMPLETE-LATTICE)
(s (SUBSET-OF CU-SET V)))) (LET-SE S (SUBSET-OF (U-SET N))

(EXISTS-SOME (PUSH-GOAL

(GREATEST-LOWER-BOUID-OF S W))) (EXISTS-SOME
(GREATEST-LOVER-BOUND-OF S W))))

(IN-CONTEXT

((ET-BE 52
(THE-SET-OF-ALL (LOWER-BOUND-OF S W)))

(LET-BE X

p. (THE (LEAST-UPPER-BOUND-UF 52 W))))

- (IN-CONTEXT
((PUSH-GOAL (IS X (LOWER-BOUND-OF S W))))

(IN-CONTEXT ((SUPPOSE
(EXISTS-SONS (MEMBER-OF Sf)

(LET-BE Y (MEMBER-OF S))
(IN-CONTEXT

S ((PUSH-GOAL
C..,(IS Y (UPPERL-BOUND-OF S2 V))))

(II-COETfl?

((SUPPOSE
(EXISTS-SOME (MENDER-OF 92M)

(LET-BK Z (HEMBER-OF 82)))
(NOTE-GOAL))

(NOTE-GOAL)))

(NOTE-GOAL))

(NOTE-GOL)))

(LEMMA (IN-CONTEXT ((ET-BK V COEPLETE-LATTICE)
(FRAL (VCOPLT-LATTICE)) (PS-GOAL (IS V LATTICE)))

(IS V LATTICE))) (IN-CONTEXT ((ET-BE I (IN-U-SET V))

(LET-BE T (IN-U-SET V))
(LET-BE SIT (MAKE-SET I TM))

(NOTE-GAL)))

(OFETERM (INCLUSION-ORLDER (F FAMILY-OF-SETS))

.e (MAKE-RELATION-STRUCTURE

e (THE-RULE ((S (MEMBER-OF F)

aL (TEE-SET-OF-ALL

V (AID-TYPE (MEMBER-OF F)
Pd (PROPER-SUPERSET-OF S))))

Nip.

mk
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(LEMMA (IV-CONTEXT
(FORALL ((F FAMILY-OF-SETS)) ((ET-BE F FAMILY-OF-SETS)

(IS (THE-RULE ((S (MEMBER-OF WP) (LET-BE R.
(TEE-SET-OF-ALL (THE-RULE ((S (MEMBER-OF F))

(AND-TYPE (TEE-SET-OF-ALL

(KEMBER-OF F) (IND-TYPE (MEMBER-OF F)
(PROPER-SUPERSET-OF S)))) (PROPER-StJPERSET-OF S))))))

(RELATION-ON F) (5C)TX

(LEMMA ((PUSH-GOAL (IS R (RELATION-ON F))
(FORALL ((F FAMILY-CF-SETS)) (LET-BE S (MEMBER-OF F))

(IS (INCLUSION-ORDER F) POSETM) (LET-BE F2 (APPLY-RULE Rt 3)))

(IN-CONTEXT
((PUSH-GOAL (IS F2 (SUBSET-OF F)))

(It-CONTEIT
((SUPPOSE

(EXISTS-SOME (MEMBER-OF F2)))

(LET-BE S2 (MEMBER-OF F2)))
(NOTE-OAL))

(NOTE-GOAL))
(NOTE-GOAL))

(IN-CONTEXT

((PUSH-GOAL
(IS (INGLUSION-ORDER F) POSET))

(IN-CONTEXT
((PUSH-GOAL

(IS R (PARTIAL-ORDER-ON F))
(LET-BE 51 (KEMBER-OF F))

(ZN-CONTEXT
((PUs.H-GOAL

(FORALL ((52 (RELATED-TO Si R))

(IS-EVERY (RELATED-TO S2 R.%
(RELATED-TO S1 R)))))

(IN-CONTEXT

((SUPPOSE
(EXISTS-SOME (RELATFED-TO Si W)

(LET-BE $2 (RELATED-TO St R))

(IN-CONTEXT

(IS-EVERY (RELATED-TO S2 R)))

(IN-CONTEIT
((SUPPOSE

* (EXISTS-SOME
(RELATED-TO S2 RM)

(LET-BE S3 (RELATED-TO 52 R))

(NOTE (I3S 3 (NOT-EQUAL-TO SIM)
(NOTE-GOAL))

(NOTE-GOAL))
(NOTE-GOAL))

(NOTE-GOAL))
* (NOTE-GOAL))

(ZNI-CONTEXT
((ET-BE V (INCLUSION-ORDER F))

(NOTE-GOAL)

%
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4,f-
,' (LEMA (FORALL ((F FAMILY-OF-oSETS)) (IN-CONTEXT

". (- (U-SET ((LET-BE F FAMILY-OF-SETS)
(INCLUSIGI-ORDER F)) (LET-BE R

F))) (TEE-RULE ((S (SMBE.-OF F)))
'4. (TEE-SET-OF-ALL

(LEMMA (AND-TYPE (MEMBER-OF F)
(FORALL Z(F FAMILY-OF-SETS) (PROPER-SUPERSET-OF S)))))

(52 (MEMBER-OF F)) (LET-BE W (INCLUSION-ORDER F)))
i-. (Si (MEMBER-OF F)))

(IFF (NOTE ( (U-SET W) F))
(IS Si

(LES3-Oft-7QUAL-TO (IN-CONTEXT
'P. S2 ((LET-BE Si (MEMBER-OF F))

(INCLUSION-ORDER F))) (LET-SE 52 (MEMBER-OF F))
(IS sl (PUSH-GOLL

(SUBSET-OF 92))))) (IFF (IS S1 (LESS-OR-EQUAL-TO 32 W))
(IS St (SUBSET-OF S2)))))

V%. (IN-CONTEXT
* •((SUPPOSE

(IS SI (LESS-OR-EQUAL-TO 32 W))))
(IN-CONTEXT ((SUPPOSE (- Si S2)))

:0 (NOTE-GOAL))
(NOTE-GOAL))

(IN-CONTEXT ((SUPPOSE (IS Si (SUBSET-OF $2))))
(IN-CONTEXT ((SUPPOSE (= Si $2)))

(NOTE-GOAL))
(NOTE-OOAL))

(IOTE-GOAL)))

(DEFTERM (POWER-SET-LATTICE (S NON-EMPTY-SEK))
(INCLUSION-ORDER (POWER-SET S)

4.: (DEFTYPE POWER-LATTICE

(WRITABLE-AS (POWER-SET-LATTICE S)
(S NON-EPTY-SET)))

p.4

% %

%SI=, p
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(LEMMA (IN-CONTEXT
(FORALL ((B POWER-LATTICE)) ((ET-BE 3 POVER-LATTICE)

(1S B POSET)) (WRITE-AS B (POWER-SET-LATTICE S)

(S NON-ENP1"r-SET))
(LEMMA (LET-BE P (U-SET 8))

(FORALL ((B POWER LATTICE)) (LET-BE P2 (POWER-sET 5))
(1S (U-SET B) (NOTE (IS B POSEM)

FAMILY-OF-SETS)) (NOTE (IS (U-SET B) FAMILY-OF-SETS))

(LEMMA (NOTE (- S (FAMILY-UNION CU-SET B)

(FoRALL (NOTE (IS (FAMILY-UNION (U-SET B))

((B POWER-LATTICE) NON-EMPTY-SET))
(S 1ON-EMPTY-SET (NOTE

(- (POWER-SET-LATTICE S)) ( (U-SET B)
(- ~ (POWER-SET

(FMILY-UNION FAILY-t'NION (U-.qET B))))))

(U-SET B)))))

(LEMMA
(FORALL ((3 POWER-LATTICE))

(IS (FAMILY-UNIXt (U-SET B))

SON-EMPTY-SEM)

(LEMMA
(FORAIL ((B POWER-LATTICE))

(-(U-SET 8)
(POWER-SET

(FAMILY-UNION
(U-SET B))))))

(LEMMA (IN-CONTEXT
(FOXALL ((B POWER-LATTICE) ((ET-BE B POWER-LATTICE)

(92 (IN-U-SET B)) (VRIrE-AS B (POWERt-SET-LATTICE S)
(I3S52 SET)) (S NON-EMPTY-SET))

(LMM (LET-BE P (U-SET B))
* (LMMA(LET-Bit S2 (I1-U-S&T BM)

(FORALL ((3 POWER-LATTICE) (NOTE (I5 52 SET))
(S2 (IN-U-SET B)) (NOTE

(is 52 (IS S2
*(SUBSET-OF (SUBSET-OF

(FAMILY-UlIOg (FAMILY-UNION (U-SET B))))
(U-SET B))))))

VV WV
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(LEMMA (IN-CONTEXT

(FORALL ((B POWER-LATICE) ((ET-BE B POWER-LATTICE)

(S2 (SUBSET-OF (flUXE-AS B (POun-SET-LTTICE 5)

(FAMILY-UNION (S NO-EPrr-SET))

(U-SET B))))) (LET-BE P (U-SET BM)

(I5 52 (IN-U-SET B)))) -OTX(I-NTT

*(LEMMA ((LET-SE S2

(FO0RAIL (SUBSET-OF

((B PaVER-LATTICE) (FAMILY-UNION (U-SET 8)))))

(52 (1N-U-SET B)) (NOTE (IS 52 (IN-U-SET B))))

(S3 LES-01EQUA-TOS2 ))) (IN-CONTEXT ((LET-BE S2 (IN-U-SET B)))
(I9S53 (SUBSET-OF S2)))) (INI-CONTEXT

(t.E1NA ((ET-BE S3 (LESS-O-EQUAL-TO S2 BM)

(FORALL ((B POWER-LATTICE) (NOTE (IS 53 (SUBSET-OF 52))))

(52 (IN-U-SET B)) (IN-CONTEXT ((ET-BE S3 (SUBSET-OF $2)))

(S3 (SUBSET-OF 32))) (NOTE (IS S3 (LESS-OR-EQUAL-TO 52 B)))))

(IS 53

(LESS-OR-EQUAL-TO S2 B)))) (IN-CONTEXT
((ET-E F (NON1-EMIPTY-SUBSET-OF (U-SET B)))

(LEMA (P1381-GOAL (IS F FAMILY-OF-SETS))

(FORAL). ((B POWER-LATTICE) (IN-CONTEXT ((LET-RE S (MMBER-OF F)))

*(F (NON-EMPTY-SUBSET-OF (NOTE-GOAL))))
(U-SET B))))

(IS F FAMILY-F-SETS)))

(LEMMA (IN-CONTEXT

(FORALL ((B POWER-LATTICE) ((LET-BE B POWER-LATTICE)

(F (NON-EMPTY-SUBSET-OF (LET-BE F (NON-EMPTY-SUBSET-OF (U-SnT B)))

(U-SET B)))) (LET-BE LOB (FAMILY-UNION F))

(IS (FAMILY-UNION F) (PUSH-GOAL
(LEA$T-UPPER00NID-OF F B)))) (IS LUB (LEAST-UPPERBROUND-OF F B))))

(IN-CONTEXT

((PUSH-GOAL (is Liii (ZN-U-SET BM)

(LET-BE S (FANqILY-OUIN (U-SET B))))

(NanE-GOAL))
(INl-CONTEXT

(POUSH-GOAL
(IS LUB (UPPER-BOUND-OF F B)))

%- (LET-BE S (MEMBER-OF FM)

4 (NonE-GOAL))
(IN-CONTEXT

((ET-RE S (UPPfl-BOUWD-OF F BM)

* (IN-CONTEXT
((PUSH-GOAL

(IS-EVERY (MEMBER-OF F)
(SUBSET-OF 5)))

(LET-BE S2 (MEMBER-OF F)))
(NOTE-GOAL))

(NOTE-GOAL)))
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(LEMMtA (12-CO3TEXT
(FOR.L. ((B POWER-LATTICE) ((ET-BE B PWRLTIE

(F (1ou-ENPTY-SUBSET-OF (LET-BE F (301-EMPTY-SUBSET-OF (U-SET BM)
(U-SET B8)) (LET-BE GLB (FAMILY- INTERSECTION M)

(IS (FAMILY-IRTERSECTIOI F) (PUSH-GaiL.
(GREATEST-LOVER-BOUUD-OF F B)))) (IS GLB

(GREATEST-LOVER-BOUUO-OF F B))))
(IN-CONTEXT

((PUSH-GOLL (IS GLB (IN-U--sET B)M
(LET-BE S (FAMILY-UNION (U-SET B));
(LET-RE 92 (MEMBER-OF M))

(NOTE-GOAL))
(IN-CONTEXT

((PUSH-GOAL (IS OLB (LOWER-BOUND-OF F B))
(LET-BE 3 (REMBER-OF F))

(NOTE-GOAL))

(I-CONT
((ET-BE S (LO[El- BOUND- OF F B))

- (IN-CONTEXT
-~ ((PUSH-GOAL

(IS-EVERY (MEMBER-OF F)
(SUPERSET-OF W))

(LET-BE S2 (MEMBER-OF F))
(NOTE-GOAL))

(NOTE-GOAL))
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(LEMMA (IN-CONTEXT
(FOKALL C(B9 POWER-LTTIcE)) ((ET-BE B POWER-LATTICE)

(IS B CCMPLETE-UTTrIcE))) (PUSH-GOAL (IS B COMPLETE-LTTICE))

(INCOT-ET F (SUBSETr-OF (U-SET B))))

(IN-CONTEXT

.0 ((PUSH-GOAL
(EXISTS-SOME

(LEAST-UPPER-BOUID-OF F B)

(IN-CONTEXT
((SUPPOSE

(EXISTS-SOME (MEMBER-OF F)
(IN-CONTEXT

((ET-BE 5 (U-SET BM)
(NOTE+GENE ILIZE

(IS F

~~ (NON-EMPTT-SUBsET-OF
(U-SET B)))))

(NOTE-GOAL))
(IN-CONTEXT

((SUPFpIsE
(NOT (EXISTS-SOME (MEMBER-OF F))))

(LET-BE ESET TEE-EMPTY-SET))
(IN-CONTEIT

((PUSI-GOAL (IS ESET (IN-U-SET BM)

-. (LET-BE S (FAMILY-UNION (U-SET B)

- (jOTE-GO1L)
(IN-CONTEXT

((ET-BE S (UPPER-BOUND-OF F B))
(NOTE-GOAL))

(NOTE-GOAL))
(VOTE-GOALM)

4
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(IN-CONTEXT ((LET-BE B POWER-LU=ICE)

(Ld (IET-BE 31 (X1-U-SET B))

(FORLaL ((B POWE-LITTICE) (LET-BE $2 (IN-U-SET B)))
(Si (IN-U-SET B)) (IN-CONTEXT
(52 (IN-U-SET B))) ((PUSs-GOAL

(uS (JOIN S S2 B)

(U..IO1 s1 S2)))) (UNION $1 S2))))
"(LEMK(I IN-CONTEXT

(FORALL ((B POWEI-LATTICE) ((LET-BE S3 (MAKE-SET Si 52)))

(Si (IS-u-sET B)) (NOTE

(52 (IN-u-SET B))) (EXICTLY-OIE

(. (MEET SI S2 B) (LEAST-UPPER-BOUND-OF S3 B)))

(INTERSECTION Si $2)))) (NOTE

(IS (UNION Sl 92)
(LEAST-UPPE-BOUID-OF $3 B))))

(iI-CONTEXT

((LET-BE J (JOIN Si S2 B))
.9. (LET-BE U (UNION Sl S2)))

(NOTE-BOaI)))
~(XEI-CONITEXT

4 ((PUSH-BOAL

(- (REET Sl 52 B)

(INTERSECTION St S2))))
(ZN-CONTEXT

((LET-BE 53 (RAE-SET 51 S2)))
(NOTE

(EXACTLY-ONE
(GREATEST-LOWER-BOUID-OF S3 B)))

(NOTE
(Is (INTERSECTION S1 S2)

". (BFKATEST-LOWER-BOUD-OF S3 B))))
N" (II-CONTEXT

((LET-BE J (MEET SI 52 B))
(LET-BE U (INTERSECTION S1 S2)))

(NOTE-OAL))))

%.

2t
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(LEMMA(IN-CONTEXT
(FORALL ((L LATTICE) ((LET-RE L LATTICE)

UI (IN-U-SET L)) (LET-SE I (If.l-U-SET L)
(Y (IN-U-SET L))) (LET-BE Y JNW-U-SET L)

(IS CREST I T L) ~LET-BE S (MALE-SET I U))
(LESS-OR-EQUAL-TO I L)))) G-nTX

(LEMMA ((Pbsli-,OlL
(FORALL ((L LATTICE) (IS (MEET I Y L)

(I (IN-U-SnT L)) (LESS-OR-EQUAL-TO X L))
(Y (IN-U-SET L))) (LET-BE K (MEET I Y L))

(IS (JOIN ITY L) (NOTE-GOAL))
(GREATER-OR-EQUAL-TO I L)))) (I-OTX

(LEMMA ((PUSH-GOAL
(FORAL.L ((L LATTICE) (IS (JOIN I Y L)

a,(I (IN-U-SET L)) (GRE~ATER-a1-EQU&IL-To I L)))
(Y (IN-U-SET L))) (LET-BE J (JIN I Y L))

(Is-EVERY (NOTE-GOAL))
(AND-TYPE 

N-OTT
(LESS-Ok-EQUAL-TO I L) (IN-CONTEXT

4 ~(LESS-OR-EQUAL-TO Y L))(PSHGA
(LESS-OR-EQUAL-TO (AND-~YE

(MEET XY L) (LES-OREQA-OIL
L~fl) (LESS-OR-EQUAL-TO I L))

(LS'R/QA-T )

(LEMMA (LESS-OR-EQUAL-TO (MEET I Y L) L))))
(FORALL ((L LATTICE) (IN-CONTEXT

(X (IN-U-SET L)) ((SUPPOSE
(Y (IN-U-SET L)) (EXISTS-SOME

(IS-EVERY (AND-TYPE
CAND-TYPE (LESS-OR-EQUAL-Ta I L)

(GREATER-OR-EQUAL-TO I L) (LESS-OR-EQUAL-TO V U)))
(GREATER-OR-EQUAL-TO T L)) (LET-SE Z

(GREATER-OR-EQUAL-TO (AND-TYPE (LESS-OR-EQUAL-TO I L)
(JOIN I V L) (LESS-OR-EQUAL-Ta Y LM)

L))))(LET-SE H (BEET I Y L))
(NOTE-GOAL))

(NOTE-GOAL))

(IN-CONTEXT

((PUSH-GOAL
(IS-EVERY

(AND-TYPE
(GREATER-OR-EQUAL-TO I L)
(GREATER-OR-EQUAL-TO Y L)

(GIREATER-OR-EQUAL-TO (JOIN I Y LQ L))))
(IN-CONTEXT

((SUPPOSE
(EXISTS-SOME

(AND-TYPE (GREATER-OR-EQUAL-Ta I L)
(GREATER-OR-EQUAL-TO V L))))

(LET-SE Z (AID-TYPE
4 (GREATER-OR-EQUAL-TO I L)

(GREATER-OR-EQUAL-Ta Y L)))

(LET-BE 1 (JOIN I V LM)

ad (NOTE-GOAL))

(NOTE-GOAL))

%
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(LEMA (I-CONTEXT ((LET-BE L LATTICE)
(FORATLL ((L LATTICE) (LET-BE X (IN-U-SET L))

(C (IN-U-SET L)) (LET-BE Y (IN-U-SET L)))
(I (IC-U-SET L))) (IN-COITEXT

(IFF (IS I ((PUSH-GaLI
(LESS-OR-EQUAL-TO Y L)) (IFF (IS X (LESS-OR-EUL-TO Y W)

(a (MEET I Y L) (m (MEET I Y L) X))))
X))))

;the ony-i1 case is trivial
(LEMA (IN-CONTEIT ((SUPPOSE (- (MEET I Y L) X)))

(FORALL (ML LATTICE) (NOTE-GOAL))
" (Y (19-U-SET L))

(I (IN-U-SET L)) (IN-CoNrET
(IFF (IS N ((SUPPOSE

(GREATER-Ok-EQUAL-TO Y IA) (IS I CLESS-OR-EQuAL-TU I L))))
C- (JOIN X Y L) ;in this case it is obvious that x

ID)) ;is a louer bound, thus we only used
;to show that x is the greatest lower

(LEMA ;bound

(FOW L (M. LATTICE) (IN-CONTEXT

(Y (IN-U-SET L))) (UPPER-BOUND-OF (MKlE-SET I Y) L))

C. (JOIN (MEET X I L) (LET-BE S (RAZE-SET X Y)))
'a¥ (NOTE-GOaL)))

SL) (IOTE-GOAL))
. . I)))

(LEMM (IN-CONMT i
(FORALL (ML LATTICE) ((PUSN-GOAL

(I (IN-U-SET L)) (IFF (IS I (GREATER-OR-EQUAL-TO Y L))

(Y (IN-U-SET L))) ( (JOIN I a L) I))))
( (MEET (JOIN I T L) (IN-CONTEXT ((SUPPOSE (a (JOIN I Y L) )))

Y (NOTE-GOAi))
L)

(IN-CONTEXT
S(SUPPOSE

(IS I (GRz .rk-oI-EgUL-TO Y L))))
(IN-cOITEXT

(PPE-BOUND-OF (RAKE-SET I Y) L))

(LET-BE S (RAKE-SET I M))

(NOTE-nOAL)))
(NOTE-GOAL))

U, (IN-CONTEXT
P((IJSN-GOIL (- (JOIN (MEET I Y L) Y L)

-~i (LET-BE R (MEET I Y L)))
* (NoTE-GOAL))

(IN-COTEXT
((PUSH- OL (- (MEET (JOIN x Y L) Y L)

(LET-BE J (JOIN I Y L)))
(NOTE-GOL)))

.. 1

%%
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%(LEMMA (IN-CONTEXT
W%(FOR.AU. MC LATTICE) ((ET-SE L. LATTICE)

UI (IN-U-SET W) (LET-BE I (11-U-SET L))
4.(12 (LESS-OI-QULL-TO X L)) (LET-BK Y (IN-U-SET L)

CY (IN-U-SET L)) (LET-BE X2 (LESS-OX-EQUAL-TO I L)))
(IS (MEET 12 Y L.) (IN-CONTEXT

(LESS-OR-EQUAL-TO (MEET I Y L) ((PUSH-GAL
L)))) (IS (MEET 12 Y L)

(LESS-O1-EQTxa.-TO (MEET I Y L) L))))
N;(LEMMA (IN-CONTEXT ((LET-BE M (MEET 12 Y LM)

(FORALL MC LITT1ZE) (NOTE-GOL)))
(I (IN-U--SET L)) (Il-CONTEXT

(12 (LESS -Oft-EQUAL-TO I L)(UR-01
(T (IN U-SET L))A (IS (JOIN I Y L)

(IS (JOIN I Y L) (GaEATER-ON.-EQUAL-TO
(EATEX-OR-EQUAL-TO(JI12 L~~~(JOIN 12 Y L) 1))

-0. L)))(IN-CONTEX ((LT-BK J 3011N I Y LM)

(NOTE-GOAL)

(LEMMA (11-CONTEIT

(FORALL MC LATTICE) ((ET-BK L LATTICE)
(I (IN-U-SET L)) (LET-BK X (IN-U-SET L))
(Y (IN-U-SET L)) (LET-BE Y (IN-U-SET L))
(Z (Il-U-SET LM)) (LET-BE Z (IN-U-SET L))

(a (MEET Z (MEET I T L) L) (LET-BE SKY (MAKE-SET X Y))
(THE (LET-BE sxll CRAZE-SET I Y ZMl
(GREATKST-LOVER-BOUND-OF :meet is associative.

(MAKE-SET X Y 2) (IN-CONTEXT
L))))(LET-BE MIT (REET I Y W)

( (LET-BE RITZ (MEET Z MIT L))

A(FONATTL MC LATTICE) (PUSITOA

A (U (IN-U-SET L))

(Y (N-USETL))(GREATKST-LOVEIL-BOUND-OF SXTZ WM)))
(Z (IN-U-SET LW)) ;it is already a lower bound so we must show

C(JOIN Z (JOIN I Y L.) L) ;that it is th, greatest
(THE (IN-CONTEXT

(LEAST-UPPEI-BOUND-OF ((LF!-BE 1.30111 (LOVER-BOUND-OF SIYZ L)))
(RAKE-SET I T Z) (NOTE-Ann))

(IN-CONTEXT

((ET-BE 31! (JOIN I Y L))
* (LET-BE JIYZ (JOIN Z 11Y L))

(PUSS-GOAL
C-JIYZ
(THE

(LEAST-UPPER-BOUND-OF SXYZ L.)))))
(IN-CONTEXT

p. ((LET-BK UROUND (UPPER.-BOUND-OF SXYZ LM)
(NOTE-GOA)

.
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(LEKRA (IT-CONTEIT ((LET-BE L LATTICE)
(FOkRt. ((L LATTICE) (LaiT-E I (I-U-SE L)

(Y (IN-U-SET L)) (LET-BE T (IN-U-SET L))
( (11--U-SET LM)) (N0T (a (MEET 1 7 L)

(m (MEE'T Y L) (S Y I L)))
(MEET Y X L)))) (NOTE (= (JOIN I Y L)

(JOI T I L))
(LEI (IN-CONTEXT ((LET-BE Z (Il-U-SET L))
(FOPILL ((L LATTICE) (IN-COITEXT ((LET-BE MIY (KEET I Y L)))

* (Y (IN-U-SET L)) (NOTE (- (BEET MIY Z L)
(X (IN-U-SET L) (BEET Z BIY L))))

(, (J01N I T L) (IN-CONTEXT ((LET-BE J3Y (JOIN I Y L))

(JOIN Y I L)) (NOTE (= (JOIN JIY Z L)
(LEMMA (JOIN Z JXY L))))

(FORALL ((L LATTICE) (NOTE (a (MEET X (CKET Y Z LI L)

(Z (I1l-U-SET L) (KEET (KEET I Y L) Z L))

( (IN-U-SET L)) (NOTE (- (JOI I (JOIN Y Z L) L)

(Y (IN-U-SET L)) (JOIN (JOIN I Y L) Z L)))))

(a (NEET (MEET I Y L) 2 L)
(KEE? Z (MEET I V L) L))))

(LEMM

(FORALL ((L LATTICE)
( (IN-U-SET L)
( (IN-U-SET L))
(Y (IN-U-SET LI))

I(- (JOIN (JOIN Z Y L) Z L)

(JOIN Z (JOIN I Y L) L))))

(LEKtl
(FfUL ((L LATTICE)

(I (IN-U-SET L))
(Y (IN-U-SET L))
(Z (INl-U-SET L))

(w (MEET I (REET Y Z L) L)

(MEET (MEET I Y L) Z L))))

(TLEMSA

(FOIALL ((L LATTICE)
( (IN-u-SE? L))
(Y (IN-U-SET L)I
(Z (IN-U-SET L)

(a(20131 (JON 1 ZLI L)
(JOIN (JOIN I Y L) Z LII)

6
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A.7 Bounded, Distributive and Complemented
Lattices

A bounded lattice is a lattice with a zreatest and a least member where
the greatest member is distinct from the least member (singleton lattices are
ruled out). If L is a bounded lattice and x and y are elements of L we say
that r and y are complements if their meet is the least member of L and
there join is the greatest member of L. A complemented lattice is a bounded
lattice in which every element has at least one complement.

A distributive lattice is lattice in which meet distributes over join and
vice versa. In a bounded distributive lattice every element has at most one

0 complement. A Boolean lattice is a complemented distribu'ive lattice. We
prove deMorgan's laws for Boolean lattices and establish several distinct
characterizations of the lattice order relation.

%We also show that every power set lattice is a Boolean lattice.

9%?. (DKFVPK EOUNDED-LArrICE
"' (IUDA ( L LATTICE))

it. Ciziys-ou

r. (GREATEST-IlBERf-OF (U-SET L) L))
(EZISTS-SOME

(LEAST-BEflfl-OF (U-SET L) L)
(NOT
(, (TIE (GNEATEST-HERBFA-UF (U-SET L) L))

(TIE (LEST-HEBE-OF (U-SET L) I)))))))

t(LIM (I-COTEIT ((LMET-BE L LATTICE)

- (FOR LL (ML LATTICE)) (LET-BE S (U-SET LM

(IT-HOST-AE (NOTE (T-OST-OfE (GLEATEST-HIEI-OF S L)))
(GRIATEST-REEREZ-OF (U-SET L) ))) (NOTE (AT-MOST-ONE (LEIST-MLMXE-OF S L))))

(LEMMA

(FORAL. (ML LATTICE))
4€'. (IT-MOST-ONE

% (LEAST-REBE-OF (U-SET L) L))))

* .(DEFTEXE (TOP (L BOUIDED-LrTTICE))
(TRE (GREATEST-HEI BER-OF (U-SET L) L))

(DEFTERA (BOTTOM L BOUIDED-LATTICE))

(TI E (LEAST-EP M-OF (U-SET L) L)))

0 -V
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hU (EMMA (1N-CONTEIT
(FORALL M( POWER-LATTICE)) ((ET-BE L POWER-Y.ATTICE)

CNOr (- (FAMILY-USION CU-SET L)) (LET-BE F (U-SET L))
hiTHE-EMPTY-SET))) (LET-BE T (FAMILY-TrUilI F))

(LET-BE ROT THE-EHPTY-SET)
(LEMMA (LET-BE I (IN-U-SET Q))
(FORALL M( pfWER-LATTICE)) (NOTE (NOT (a T HOT))

(IS L. BOUNDED-LATTICE)) (NOTE (IS L BOUIOEO-LATTICE))

-t (LEMMA (HTS (m (TOP L) T))
(FORALL UCL POWER-LATTICE)) (NOTE (.(BOTTOM L) HOT))

(a(TOP L)

(FAMILY-UNION (U-SET L)))))

(LEMMA

(FORALL (CL POWER-LATT2CE)
((BOTTOM L) TPE-EMPTY-SST)))
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(LEMMA (IN-CONTEXT ((LET-BE L BOUIDED-LATTICE)
(FORALL ((L BOUNDED-LATTICE)) (LET-BE I (IN-U-SET L))

N' (IS (TOP L) (LET-BE 5 (U-SET Q))

(11-U-SET L)))) (IN-CONTEXT ((LET-BE T (TOP L)))
(LEMMI (NOTE (IS T (IN-U-SET L)))
(FORL.L ((L BOUNDED-LATTICE) (NOTE (IS I (LESS-OR.-EQUAL-TO T L)))

(I IN-U-SET L))) (NOTE (I I (MEET I T ))
(IS I (NOTE ( T (JOIN I T L))))

(LESS-OR-EQUAL-T (TOP L)
(IN-CONTEXT ((LET-BE F (BOTTOM L)))L)))) (NOTE (IS F (IN-U-SET L)))

(LEMMA (NOTE (IS I (GREATEL-OR-EQUAL-TO F ))
(FOftALL ((L BOUNDED-LATTICE) (NOTE X- I (JOIN I F L)))

(I (IN-U-SET L))) (NOTE (" F (MEET I F L)))))

(MEET I (TOP L) L))))

(LEMMA
(FORALL ((L BOUDED-LATTICE)

(I (IN-U-SET L)))
(w (TOP L)

* (JOIN 1 (TOP L) L))))

O(REMA ((L BOUNDED-LATTICE))

(IS (BOTTOM L)
(IN-U-SET L))))

(LEMMA
(FORALL (ML BOUNDED-LATTICE)

CI (IW-U-SET L)))
l . (IS I

(GitEATER-OR-EQUAL-TO
% _0 (BOTTOM L)

(LEMMA
(FORALL ((L BOUNDED-LATTICE)

(I (IN-U-SET L)))

(JOIN X (BOTTOM L) L))))
(LEMA

(L A. UL BOUVIDED-LATTICE)

( (IN-U-SET L)))
(a (BOTTOM L)

O (MEET I (BOTTOM L) L))))

(DEFTYPE DISTRIBUTIVE-LATTICE
(LAMBDA (L LATTICE))

(FORiLL ((M (IN-U-SET L))
(Y (IN-U-SET L))
(Z (Il-U-SET L))

O. (AND C" (JOIN I (MEET Y Z L) L)
(MEET (JOIN IT L) (JOIN I Z L) L)

C( (MEST I (JOIN Y Z L) L)
-4 (JOIN (M!iIT I Y L) (MEET I Z L) L))))))

01.1
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(LEMMA (IN-COTsXT ((LET-BE L POWER-LaTTICE)
(FORALL (ML POMER-LATTICE) (LET-BE S (Il-U-SET L))

(SI (IN-U-SET L)) (LET-BE S2 (IN-U-SET L))
(52 (IN-U-SET L)) (LET-BE 83 (Il-U-SET L))

(53 (IN-U-SET L)))
C- (JOIN Si (MEET 52 S3 L) L) (I-CONTET ((LET-SE 323 (MEET 52 53 L)))

(UNION (NOTE (- (JOIN 51 323 L)

Si (UNION S1 (INTERSECTION 82 53)))))

(INTERSECTIOI S2 33))))) (IN-CONTEXT ((LET-BE J12 (JOIN 81 S2 L))

(LEMA (LET-RE J13 (JOIN 81 S3 L)))

I(FOAL. ((L POVER-LATTICE) (NOTE (- (MEET J12 313 L)

(S2 (I-U-SET L)) (INTERISECTION (UNION 51 2)

(S1 (IN-U-SET L)) (UNION Sl 83)))))

(53 (IN-U-SET L))) (IN-CONTEXT ((LET-BE 323 (JOIN S2 83 L)))
.- (MEET (JOIN 81 82 L) (NOTE (a (MEET St J23 L)

(JOIN Si $3 L) (INTERSECTION Sl (UNION S2 83)))))

L)
(INTERSECTION (IN-CONTEXT ((LET-BE 112 (MEET 1 S2 L))

(UNION 81 52) (LET-BE f13 (MFET Si 83 L)))

(UNION Si S3))))) (NOTE '- (iOl 12 f13 L)
(INTERSECTION (UNION Sl 92)

(L M A (UNION S 83)))))
(FORUL ((L POlEk-LATTICE)

(SI (IN-U-SET L)) (NOrE (IS L DISTRIBUTIVE-LATTICE)))
(52 (IN-U-SET L))

(53 (IN-U-SET L)))
(C (MEET Sl (JOIN 52 53 L) L)

(INTERSECTION S1 (UNION 92
S3)))))

(LEMMA
(FORLk.L. ((L POWER-LATTICE)

(52 (IN-U-SET L))

(SI (IN-U-SET L))
(S3 (13-U-SET L)))

(A (JOIN (MEET 51 52 L)
(MEET 51 S3 L)
L)

(UNION (INTERSECTION S1 S2)
(INTERSECTION S1 53)))))

(LEMMA
3.* (FORALL (ML POVER-LATTICE))

(IS L DISTRIBUTIVE-LATTICE)))

AK
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(DEFTYPE (COMPLEMENT-OF (I (IN-U-SET L))
(L BOUNDED-LATTICE))

(LAMBDA ((Y (IN-U-SET LM)
(AND Cu(MEET I T L)

A (BOTTOM L))
to C.(JOIN 1 Y L)

(TOP L))f)

(DEFTYPE CEJMPLEMENTED-LATTICE
V (LAMBDA ((L BOUNDED-LATTICE))

ft.. (FORALL MC (TN-U-SET L)))
(EXISTS-SOME

V (COMPLEMENT-OF I L)

(LEMMA (IN-CONTEXT

~W (FORALL ((L POWER-LATTICE) ((ET-BE L POWER-LATTICE)

(Si (IN-U-SET Q)) (LET-SE UNIVERSE (FAMILY-UNION (U-SET L)))
(IS (SET-DIFFERENCE (LET-SE S1 (IN-U-SnT L))

(FAMILY-UNION (U-SET L)) (LET-BE S2 (SET-DIFFEREICE UNIVERSE SI))
Si) L)) (NOTE (IS S2 (COMPLEMENT-OF Si LM)

(COMPLEMENT-OF91L)) (NOTE (IS L COMPLEMNFTED-LTTICE))

A; (LEMMA
-. (FORALL MC POWER-LATTICE))

(IS L COMPLEMETD-LTTICE))

(LEMMA (IN-CONTEXT ((LET-BE L POWER-LATTICE))
(EXISTS-SOME (NOTE

(LID-TYPE DISTRIBUTIVE-LATTICE CEZISTS-SOME
SOUNDED-LATTICE)) (AND-TYPE DXSTXIBUTIVE-LATTICE

BOUNDED-LATTICE)

(LEMMA CL(N-IE(IN-CONTEXT
(FOLALL C ((L-IP ET-BK L CUD-TYPE DXSTNISUTIVK-LATTICK

VDISTRXBUTIYE-LATTTCE SOUNDED-LATTICE))
BOUNDED-LATTICE)) (LET-BK X (IN-U-SET L)

UX Cu-u-SET L)) (PUSP-GOAL (AT-MOST-ONE (COMPLEMENT-OF I L))))
CAT-MOST-ONE (COMPLEMENT-OF I L))) (IN-CONTEXT

((SUPPOSE
(EXISTS-SOME (COMPLEMENT-OF I LM)

tJ% (LET-SE Yl (COMPLEMENT-OP I L))

(LET-BE Y2 (COMPLEMENT-OF I L))
1. (NOTE-GOAL))

* (NOTE-GOA)

COEFTYPE BOOLEAN-LATTICE
(AND-TYPE DISTRIBUTIVE-LATT'ICE

COMPLEMENTED-LATTICE))

(DEFTER (COMPLEMENT
* CU (IN-U-SET 3))

(B BOOLEAN-LATTICE))

(TEE (COMPLEMENT-OF I BM)
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(LEMMA (IN-CONTEXT ((LET-BE L POVER-LATTICE))
(EXISTS-SOME BOOLEAN-LTTICE)) (NOTE (EXISTS-SOME BOOLEAN-LATTICE)))

( LEMMqA ( IN-CONTEXT

(FORALL ((B BOOLEAN-LATTICE) ((LET-BE B BOLEAU-LATTICE)
U;,r Z (13-U-SET B)) (LET-BE X (I-U-SET B))
(Y IN-U-SET B))' (LET-BE Y (IN-U-SET B))

(COMPLEIENT (MEET I Y B) B) (LET-BE CX (COMPLEMENT I B))
(JOIN (COMPLEMENT I B) (LET-BE CV (COMPLEMENT Y B)))

(COMPLEMENT Y B)
B)))) (IN-CONTEXT ((LET-BE K (MEET X Y B))

(LET-BE J (3OI CI CY B)))
(LEMMA (NOTE (- (COMPLEMENT N B) J)))
(FOIALL ((B BOOLEAN-LATTICE)

(I N-U-SET(-CTEXT ((LET-BE 3 (MEET 1 Y B))' (Y (IN-U-SET B))).*' (V (IN-U-SET 9))) (LET-BE N (MEET CI C¥ B)))

= (COMPLEMENT (JOIN I T B) B) (NOTE (= (COMPLEMENT I B) N))))

(MEET (COMPLEMENT I B)

(COMPLEMENT Y B)
B))))

(LEMMA (IN-CONTEXT ((LET-BE B BOOLEAN-LATTICE)
(FOULLL ((B BOOLEA-LATTICE) (LET-BE I (IN-U-SET B))

-. ( (IN-U-SET B)) (LET-BE V (IN-U-SET B)))

. (Y (IN-U-SET B))) (IN-CONTEXT ((LET-BE K (MEET X Y B))
- ( (MEEr X Y B) (LET-BE 3 (JOIN (COMPLEMENT X B)
. (COMPLEMENT (COMrLEMENT Y B)

(JOIN (COMPLEMENT I B) B)))
(COMPLEMENT Y B) (NOTE (a M (COMPLEMENT 3 B))))
B) (IN-CONTEXT ((LET-BE J (JOIN I Y B))

B)))) (LET-BE M (MEET (COMPLEMENT X B)
(COMPLEMENT Y B)

(LEMMA B)))
(FOALL ((B BOOLEAN-LATTICE) (NOTE (a J (COMPLEMENT M B)))))

( (IN-U-SET B))
(Y (IN-U-SET 8)))

( (JOIN I T B)
(COMPLEMENT

(MEET (COMPLEMENT I B)
(COMPLEMENT Y B)

B)
, B))))

.,
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the folloving ar. *quival~nt: (IN-CONTEXT ((ET-BE B BOOLEIN-LATTICE)
(LET-BE X (IN-U-SET B))

(IS X (LESS-Oft-EQUAL-TO Y B)) (LET-BE Y (IN-U-SET B))

(Is (OMPLMENTY B)(11-CONTEXT
(S(MLEOMETAL-BO ((SUPPOSE (IS I (LESS-OR-EQUAL-TO Y BM)

(CSOPLEQUINTOB (PUSH-GOAL (IS (COMPLEMENT Y B)
BCMPEEN)IB (LESS-OR-EQUAL-TO

B)) (COnPLEREIT 1 B)

(BOET IOMPLMN B))B (Il-CONTEXT ((ET-BE Cl (COMPLEMENT I B))
(BOTTM B))(LET-BE CY (COMPLEMIENT Y B)))

(NOTE-GOAL))
((JOIN (COMPLEMENT 1 6) Y B)

(TOP 9)) (IN-CONTEXT

(LEMMA ((SUPPOSE (IS (COMPLEMENT Y 0)

(FORALL ((B BOOLEAN-LATTICE,' (LESS-ORIEQUAL-TO
(COMPLEMENT I B)

(I (IN-U-SET b)) B)

(a> ( I-Us B)) (PUSH-GOAL (- (MEET I (COMPLEMENT Y B) B)

(LESS -Oft-EQUAL-TO Y B)) (BOTTOM B))))

(IS (COMPLEMENT Y B) (IN-CONTEXT ((LET-BE CX (COMPLEMET I B))
(LET-BE CT (COMPL EMENT Yf B))(LESS-Oft-EQUAL-TO(NT-OL)

(COMPLEMENT I B) NT-OL

(LMM ((SUPPOSE (w (MEET I (COMPLEMENT Y B) B)

(FORAI.L ((B BOOLEAN-LATTICE) (BOTTOM B))

(N (IN-U-SET B)) (PUSH-GOAL (- (JOIN (COMPLEMENT I B) Y B)

(Y (Il-U-SET B)) (TOP B))))

(w> (IS (COMPLEMENT Y B) (IN-CONTEXT ((ET-BE CT (COMPLEMENT Y B))

(LESS-OR-EQUAL-TO (LET-BE J
(COMPLEMENT X B) (OEGLM(JOIN (COMPLEMENT 1 B) Y B))
B))(NT-OL)

(w (MEET I (COMPLEMENT Y B) B) (IN-CONTEXT
(BOTTOM B));)) ((SUPPOSE (- (JOIN (COMPLEMENT I B) Y B)

(LEMMA (TOP B))
(FOAM (B OOLAN-ITTCE)(PUSH-GOAL (IS I (LESS-OR-EQUAL-TO Y B)

UFRL ((B BOOLENLTT)) (IN-CONTEXT ((ET-BE CI (COMPLEMENT X B))

(Y (Ilf-U-SET B)) (LET-BE R (MEET I Y B))
(.p.( (MEET I (COMPLEMENT Y B) B) (NOTE-GOAL)

(BOTTOM B))
((JOIN (COMPLEMENT I B) Y B)

(TOP B)))))

(LEMKA
(FORALL ((B BOOLEA-LATTICE)

(V (Ilf-U-SET B))
(I (1N-u-517T B))

(x>( (JOIN (COMPLEMENT I B) Y B)
(TOP B))

(IS 1
(LESS-Oft-EQUAL-TO i B)))))

r .W r, %
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A.8 Sublattices
9-

A lattice subset of a Boolean lattice is a subset that is closed under the meet
and join operations of the lattice. The poset which results from restricting the
order in L to lattice subset of L is called a lattice subalgebra of L. We prove

A, that a lattice subalgebra of L is a lattice with the same lattice operations as

L.

A Boolean subset of Boolean lattice is a lattice subset which is also closed
under taking complements; from deMorgan's laws it is sufficient that the sub-
set be closed under intersection and complement or union and completement.

0 The poset which results from restricting the order of a boolean lattice L to
a Boolean subset of L is called a Boolean subalgebra of L. We prove that a
Boolean subalgebra of L is a Boolean lattice with the same Boolean opera-
tions as L.

(DEFTTPE (FIEITE-REET-SUBSET-OF (B LATTICE))
(LAMBDA ((s (Oh-ExRPTY-SUBSrr-OF (U-SET B))))

(FOMAL ((I (MEMBER-OF s)))
(FORALL M(C (MMER-a? a))
(IS (MEET I Y B) (MEMBER-OF SD)))))

Pt

(DEFTYPE (FIITE-JOIN-SUBSET-OF (B LATTICE))
.' " MAUDA ((S (NoR-EiT -sUBsET-oF (U-sET 9))))

(FORALL ((I (MEMBER-OF SD)
(FOA1LL ( (MEMBER-OF s)))

(IS (JOIN I Y B) (MEMBER-OF S))))))

N, (DEFTYPE (LATTICE-SUBSET-OF (L LATTICE))
(AID-TYPE (FINITE-MIEET-SUBSET-OF L)

(FINITE-JOI-SUBSET-OF L)))

(LEMA (Il-COITEXT ((LET-BE L LATTICE)

(FORALL ((L LATTICE)) (LET-BE S (U-SET L))
(IS (U-snT L) (PUSH-GOAL

(LATTICE-SUBSET-OF L)))) (IS S (LATTICE-SUBSET-OF L))))
(If-CONTEXT ((LET-BE I (Il-U-SET L))

(LET-BE Y (I-U-SET L)))
*. (I-corXT ((LrET-BE N (MEET I Y L))

(NOTE (IS N (MMER-OF S))))
(IN-CONTErT ((LET-BE J (JOIN I Y L)))
(NOTE (IS 3 (MEMBER-OF S))))

(NOTE-GOAL)))

%1%,:
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(DEnTYPS, (LATTICE-SUIALOEEKA-UF (L LATTICE))
k (UIaTABLE-AS CIESTRICT-ORDER L S)
It (3 (LArrICE-SUaETr-ar LM)

It(LEMMA (IN-COITEIT ((LET-as L LATTICE)

(FORALL MC LATTICE)) (LET-BE S (U-SET L)
(EXISTS-SOME (LET-BE L2 (RESTRICT-ORDER L 5))

(LATTICE-SUBALGEBRA-OF L)2)) (NOTE
(EXISTS-SOME

(LATTICE-SBALOGEBRA-OF L)))

(LEMMA(I-CONTEXT
(FOR.ALL ((ET-BE LI LATTICE)

((l LATTICE) (LET-BE L2 (LATTICE- SUBALGEBRA- OF Li)
(L.2 (LATTICE-SUBALGEBRA-OF LI ") (WRITE-AS L2 (RESTRICT-ORDER Li S)

(IS (U-SET L.2) (S (LATTICE-SUBSET-OF LI)
(LATTICE-SUBSET-ar LI))) (NOTE (IS (U-SET L.2) (LATTICE-SUBSET-OF LI)



(LEMMA(IN-CONTEXT

(FORALL ((ET-BE Li LATTICE)

(.L1 LATTICE) (LET-BK !L2 (LATTICE-rIMrLGEUAI-Or Li)

ML2 (LAT"TICE- SUBLLGEBRAl-OF LI) (LET-BE X (IN-U-SET L2))
(I (Ii--6-SET L2)) (LET-BE Y (IN-U-SET L2))

(IS I (IN-U-SET Li))) (WRITE-AS L2 (RESTRICT-ORDER Li S)

(LEMKA (S (LATTICE-SUBSET-OF LI)

(FORALL (NOTE (IS I (IN-U-SET LI))

((l LATTICE) (NCRETM7B UESTXY
V (L~~~~2 (LATTICE-SUBALOEBRA-OF Li)M I-OTX (i-ES(AESTIY)

( I (IN-u-SET L2)) (IN-CONTEXT
(Y (IN-U-SET L2))) ((ET-BE 3 (JOIN I Y Li))

(IS (JOIN I Y Li) (PUSH-GOAL

(LEAST-UPPER-BOUND-OF (IS 3 (LEAS T-UPPER-BOUND-OF S La))
(MANSET(LET-BE Z (UPPER- BOUND-OF S L2)))

(RZ-E 0 Y (NOTE-GOAL))
Li))))(IN-CONTEXT

(LEMMA ((ET-BE K (MEET I T Li))
(VORALL (PUSR-GOAL

((l LATTICE) (IS K (GREATEST-LOWER-BOU]ID-OF S LM)
-- (L (LATTICE- SUSALGEBRA-OF Li) (LET-BE Z (LOWER- BOUND-OF S La))

UI (IN-U-SET LM) (NOTE-Qua)))
St(Y (IN-U-SET L.2))) (NOTE (IS L2 LATTICE))

(IS (MEET I T Li)
N (QaEITSjT-LflgER-ROUlD-OF (1N-CONTEXT ((ET-BE 3 (JOIN I Y Li))

(MAKE-SET I Y) (NOTE (- (JOIN I Y Li) (JOIN I Y L2))))

(IN-CONTEXT ((ET-BE N (MEET I Y LI))
(LEMMA (NOTE C-(MEET I Y Li) (MEET I Y La)))))

(FORALL

((l LATTICE)
(L2 (LATTICE-SUBALGEBRA-OF LI)):1 (IS L2 LATTICE))

~2 (LEKKA
(FORALL

((Li LATTICE)
ML2 (LATTICE-SUBALGEBRA-OF Li)

VI (Y (IN-U-SET LM))
V(s (JOIN I Y Li,'

p (JOIN I T L2)

* - ((L LATTICE)
ML2 (LATTICE- SUBALGEBRA-0 F Li))

(Y (IN-U-SET Li))

((MEET I Y Li)
(MEET I T La))))

r , _
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(LEfI (IN-COTEIT

(IORALL ((LET-BE Li LATTICE)
((Li LATTICE) (LET-BE L2 (LATTICE-SUkLGLCEBM-OF Li))

(L2 (LATTICE-SUBLLGEBLA-6F Li)) .ZT-B I (IN-U-SET L2))
(Z (I-U-SET L2)) (LET-BE Y (13-U-SET L2))
(U (IN-U-SET L2)) (LET-BE Z (IN-U-SET L2))
(Y (IN-U-SET L2))) (WRITE-AS L2 (RESTRICT-ORDER Li S)

(= (MEET Z (JOIN I Y L2) L2) (S (LATTICE-SUBSET-OF LI)))
' (MEET Z (JOIN I Y Li) Li)))) (LET-BE J (JOIN I Y L2)))

(LEMMA (NOTE (- (MEET Z (JOIN I Y L2) L2)

(FORALL (PWEEr 2 (JOIN x I LI) LI)))

M((L LATTICE) (NOTE (- ( (JOIN I Y L2)-L2)

(L2 (LATTICE-SUBLLGEBRA-OF Li)) (JOIN 2 (JlIN I Y Li) LI)))

Z (IN-U-SET L2)) (IN-CONTET ((LET-BE J2 (JOIN Z 1 L2)))
(I (IN-U-SET L2)) (MOTE C- (MEET (JO1 

1 Y L2)
(Y (I1-U-SET L2))) (JOIN Z Y L2)

(- (JOIN Z (J0IN I Y L2) L2) L2)
(JOIN Z (J011 I Y Li) Li)))) (MEET (JOIN I T Li)

(30I Z Y Li)
- (LMA Li)()L)E))

(FOULt
((l LATTICE)

(L2 (LATTICE-SUBILGEBRA-OF Li))
UI (IN-U-SET L2))
(U (13-U-SET L2))
(T (IN-U-SET L2)))
(MEET (JOIN XY L2)

(JOIN Z Y L.2)
L2)

(MEET (JOIN I Y Li)
(JOIN Z 1 LI)
LI))))

0..

.

!i
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, (LEMMA (I-CONTETT

(FORALL ((LET-BE Li LATTICE)
"L: LATTICS) (LET-BE L2 (LATTICE-SUBALGEBM-OF Li))

(L2 (LATTICE-SJBALGEBI-OF L1)) (LET-BE X (IN-U-SET L2))
(Z (IN-U-SET L2)) (LET-BE Y (IN-U-SET L2))
(I (IN-U-SET L2)) (LET-BE Z (IN-U-SET L2))
(Y (IN-U-SET L2))) (WRITE-AS L2 (RESTRICT-ORDER Li S)

(= (J011 Z (MEET I Y L2) L2) (S (LATTICE-SUBSET-OF Li))))
-' % (JOIN Z (MEET I Y 1.) Li))))

(IN-CONTEIT ((LET-BE M (MEET I Y L2)))
(LEMMA (NOTE ( (JOIN Z (MEET I I L2) L2)

I (FORALL (JOIN Z (MEET I Y LI) LI)))
M((L LATTICE) (NOTE (- (MEET Z (MEET I Y L2) L2)
(L2 (LATTICE-SUBALGEBRA-OF Li)) (MEET Z (MEET I Y Li) LI)))
(Z (IN-U-SET L2)) (IN-CONTEXT ((LET-BE M2 (MEET Z Y L2)))

-,,. (I (IN-U-SET L2)) (NOTE (a (JOIN (MEET I 1 L2)
(Y (IN-U-SET L2))) (MEET Z T L2)

C, (MEET Z (MEET I T L2) L2) .2)
(MEET Z (MEET I Y LI) LI)))) (JOIN (MEET X T Li)

d4 (MEET Z Y Li)
(LEMMA Li)))))

(FORLL.
l((I LATTICE) (II-CONTEIT

t; (L2 (LATTICE-SUBLGEBRA-OF Li)) ((SUPPOSE (IS LI DISTRIBUTIVE-LATTICE)))
(X (IN-U-SET L2)) (NOTE (IS L2 DISTRIBUTIVE-LATTICE))))
(Z (IN-U-SET 1.2))

br (Y (IN-U-SET L2)))
(- (JOIN (MEET I Y L2)

(MEET Z Y L2)
L2)

(JOIN (MEET I i Li)
(MEET Z Y Li)

(LEMMA
(FOZALL ((LI LATTICE))

(IS Li DISTRIBUTIVE-LATTICE)

(FORALL
- ( (L2 (LATTICE-SUBALGEBLA-OF LI)))

(IS L2 DISTRIBUTIVE-LATTICE)))))

(DEFTIPE (COMPLEMEITED-SUBSET-OF (B BOOLEAN-LATTICE))

INV (LAMBDA ((S (NO1-ENr-SUBSET-OF (U-SET B))))
* (FOUL!. ((I (MEMBER-OF S)))

(IS (COPLUENT X B) (MERBER-OF S)))))

(DEFTYPE (BOOLEAN-SUBSET-uF (B BOOLEAN-LATTICE))
(AIND-TYPE (FINITE-MEET-SUBSET-OF B)

(FINITE- JOIN-SUBSET-OF B)
(cOKPLEmEITEO-SUBSET-OF B)))

V ..-.

-' O't
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CLERkS (IN-CONTEIT ((ET-BE B BOOLEAN-LATTICE)
(FORLL ((B BOOLEAN -LATTICE) (LET-BE S (SUBSET-OF (U-SET B)

CS C SUBSEV-OF (U-SET BM)) (I-CoTEX
(s ((SUPPOSE

(ss(IS S(S
(AND-TYPE (AND-TYPE

(FINITE-MiEET-SUBSET-OP B) (FINITE-xEgr-sSSET-OF B) .

(COMPLEMENTED-SUBSET-OF BM) (COMPLEKEITED-SUBSET-OF BM))))

- (IS s CBOOLEAN-SUBSET-UF B)))) (PUSH-GOAL (IS S (BOOLEAN-SUBSET-OF B)))
(IN-CoRTEIT ((ET-BE I (MEMER-OF 5))

(LET-BE Y (PmEMBK- S)'
(IN-CONTEXT ((ET-BE aX (COMPLE~nfi I B))

(LET-BE CT (COMPLEMENT Y B))
(NOTE (IS (PM CI CT B) (MEMBER-OF 5)

(IN-CaNTEr? ((ET-BE J (JOIN I Y B))

(LET-BE K

(MEET (COMPLEMENT X B)
(COMPLEMENT Y B) B))

(NOTE-COAL))))

(LEMMA (IN-ONTEXT ((ET-BE B BOOLEAN-LATTICE)
(FORALL ((B BOOLEAN-LATTICE) (LET-BE S (SUBSET-OF (U-SET B)

(S (SUBSET-OF (U-SET BM)) (IN-CONTEXT
((UPPOSE

(13 5 is5 $
(AND-TYPE (AND-TYPE (F~l-ONSBE-FB)

(FINITE-JOIN-SUBSET-OF B) (COMPLEMETED-SUBSET-OF B)))
(COMPLEMENTED-SUBSET-or B)) (FUSE-GOAL (IS S (BOOLLx-suBSrr-OF B)

(IS S (BUOLEAN-SUBSET-OF B)))) .1N-CONTSJT ((ET-BE I (MMBR-OF s))

(LET-BE T (MMER-OF 5))
(IN-CONTEXT ((ET-BE CA %'COMPLEMENT X B))

(LET-Pt CT (a2NPLEMENT Y BM)
(NOTE (IS (JOIN CI aT B) (MEMER-OF 3)

(IN-CONTEXT ((ET-BE N (MEET I Y W)
(LET-BE 3

(JUIN (COFLUENT 123)

(NOTEGOAL)))) (CoML.EMT Y 8) B))

(DEFTPE (BOOLEAN- SUBALGEIA-OF (B BOOLEAN-LATICE))
(UITAJLE-1S (RESTRLICT-ORDER 9 5)

(S (BOOLEAN-SUBSET-OF B)

o (LEMMA (IS-CONTEXT ((ET-BE B BOOLEAN-LATTICE)
CFUN.ALL ((B BOOLEA-LJXTICE)) (Y ET-BE S (U-SET B))

(IS (U-SET B) (PUSE-GOL
p (BOOLEAN-SUSSET-OF B))) (IS B (BOOLEAI-SUBSET-OF B)

(IN-CONTEXT ((ET-BE I (INf-U-SET B))

(IN-CONTEXT ((ET-BE aZ (COMPLEMENT I BM)
(NOTE (IS az (MEBE-OF )

(IN1-CONTEXT ((ET-BE T (IN-u-SET B))
(IN-CONTEXT 'JET-BE M (MEET I T B))

(NOTE (IS N (MEMBER-OF 5)
(NOTE-GOL)))

le fd



mbr. I'

P.1 ((1ST-BE Si BOOLEAI-LATTICE)

((31 BUOLEA-LATTICE) (LET-BE 32 (300LEN-SUA.GEBI-OF 31)
V(02 (BOOLEuN-SUSALGESSA-oF Bi))) (MUITE-AS, 82 (RESTRICT-ORDER El 5)

,r*. ~(1S 02 (LAILICE- SFALCEBRA-0F 3l))) (S (BOOLEAI-SUBSET-OF SI)

CLENFA (NOTE (IS B2 (LATTICE-SUEALOEERAL-OF RI))

(ECRALL
t(i BoOLEAN-LATT:2 E) (Il-CONTEXT ((ET-BE X (TN-U-SE:T 92)))

(52 (BUOLEAN-SL'EALGEBRA-OF 31))) (IN-CONTEXT ((LET-BE CX (COPIPLErEST I EM)

(IS (TOP 81) (IN-U-SET B2)))) ;top - (join x cx bi)

-(LEMMA (NOTE (IS (TOP 31) (IN-U-SET B2)))

(FORALL ;battom (poet x cx bi)

((51 BOOLEIR-LATTICE) (NOTE (IS (BOTTOM El) (IN-U-SET 02)))))

(82 (SOOLEAI-SUSALOEBRA-OF 31))) (IN-CONTET M(ET-E T (TOP El))
- -. ~~~(IS (BOTTOM SB) (IN-U-SET 32))))(L-SI(NUSE02)

(NOTE
(LEMMA (IS T
(FORALL

((&I BOOLEAI-LATTICE) (GSEATEST-REN]EI-OF (U-SET B2) B2))))

(32 (EOOLEAE-SUDLOEBRI-OF 31))) (IN-CONTEXT M(1T-SE F (BOTTOM El)
4(IS (TOP SI) (LET-SE X (IN-tI-SET 32)))

(GREATEST-MEMBER-OF ('-SnT 32) (NOTE
32))) (IS F

(T EMMA (LEAST-MEMBER-OF (U-SET 32) 32))))

(FORAM.] (IN-CONTEXT ((LET-BE T (TOP 80))
((El BOOLEAU-LATTICE) (NOTE (- (TOP 32) (TOP DI)
(B2 (EOOLEAN-SUEILCEERA-OF Bl)M

(IS (EDITOR 31) (Il-CONTEXT ((ET-BE F (BOTTOM El)))

%(LEAST-MEMBER-OF (U-SnT 32) 32)))) (NOTE (a (BOTTOM 32) (BOTTORM )

(LEMt (IN-CONTEYIT ((LET-BE I (11-U-SET 32))
(FOLA'.L(LET-BE CX (COMPLEMENT I BM)

((Si BOOLEAN-LATTICE) (NOTE (IS 92 COMPLEMED-LATTICE))
-' (82 (IOOLEAN-SIJEALGEBKA-OF Bj))) (NOTE (a (COMPLEMENT I 32)

((TOP 32) (TOP SI))) (CUWMMNT IL ii)))))

(LflMr

(FOWLT
-. ((91 300LEAN-LUflICE)

(B2 (BOOLEELN-SUDALGEBL-OF Bl)M

((BOTTOM 32) (BOTTOM BE)

(LEKMA

*((51 BOOLEAN-Ia'7ICE)
(B2 (EOOLEI-SUBALGEERA-UF 31)))

4 (IS 82 CORPLERETED-LATTICE))

(LEMA

I. ,((Si SOOLEAN-LAITTICE)
b~A.(32 (EOOLEAN-SUIBLCEERA-OIF 31))

* (I (IN-U-SET 32)))
(a(COMPLEMENT I B.")

(COMPLEMENT I 31)

07..
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A.9 Lattice Morphisms

A Boolean homomorphism is a map between Boolean lattices which com-
mutes with meet, join, and complementation. By deMorgan's laws it suffices
that the map commute with meet and completentation or join and comple-
mentation. The image of a Boolean homorphism is a Boolean subset of the
range lattice, A Boolean isomorphism is a bijective Boolean homomorphism.

(DEFTYPE LATTICE-UP
(LAMBDA ((N UAP))

(AID (IS (DORAIN N) LATTICE)
(Is (RANGE H) LATTICE))))

(DE"YPE NAP-VN ICE-RESPECTS -JOIN
(LAMBDA ((I LATTICE-NAP))

(FORAL.L (( (IN-RAP-DOMAIN ))
( (IN-rP-DoMAIN H)))

(n (APPLV-WAP N (JOIN I Y (DOMAIN H)))
(JOIN (APPLY-NAP H 1)

(APPLY-RAP I T)
'-." (RAI G IH))))))

-' (DEFTYPE NAP-VNICI-RESPECTS-NEET
(LAMBDA (M LATTICE- AP))

(FORALL ((I (II-R&P-DOAIN H))
T(Y (IN-KIP-DOMAII H)))

(a (AnPLY-M&P N (MEET I Y (DOMI H))
(MEET (APPLY-MAP 1 1)

. (APPLY-MAP H Y)
(RANGE H))))

* (DEFTYPE BOOLEAN-NAP
(LAMBDA ((H LATTICE-MAP))

4. (AND (IS (DOMAIN H)
BOOLEAN-LATTICE)

A'."(IS (RANGE H)
BOOLEAN-LATTICE)

(DEFTYPr, HICH-RESPECTS-COMPLEEFT
0. (LAMBDA ((H BOOLEIII-MAP))

(FORALL M (IN-HAP-DOMAIN N)))
(n (APPLY-MAP N (COMPLEMENT I (DOMAIN I)))

(CORFLEMENT (APPLT-AP H 1)
a-,. . (RANGE H))))))

-" - " .
-. - - " r - , - , ,- - - , ...

. /

or;.Q



3:36 APPENDiX.A. THE STON'E REPRESENT.ATION VTHEOREAI

(bEFTYPE BOOLEAN-HmONORPlISN
(AID-YPE MAP-wsICi-ESPEaTS-JOzI

KAP-VEICH-NESPECTS-NEET
NAP-vOI-EsPEs-CoMnunl))

(DEFTYPE (SOOL.EAI-HOMONORPHISN-BETWEEI
(El BOOLEA-LsrrICK)
(32 BOOLEAN-LATTICE)

(LARBDA M( (MAP-BETWEEN HI B2)
(IS H BOOLEAN-HOMONORPHISR))

(DErIVPE BOOLEAN-ISOMROIPIISN
* (AID-TIPE BOOLEAN-EDONOOR'EISN

BIJECTIN)

(DEFTYPE (DOOLEAI-ISORORPEISX-BE TVEEll
(BI BOOLEA-LATTICE)
(32 BOOLLA-LATTICE))

(AID-TYPE (BOOLEAN-E0ONRP21sN-BETWEKN Bl B2)
BIJECTIDI)

-, (DErrYPE (EOOLEAN-LATTICX-ISOMOIPRIC-TO
4 (BI BOOLEAN-LATTICE))

(LAMBDA ((82 DGOLEA-LATTICE))
a' (EXISTS-SOMR

(BOOLEAI-ISOMDRPIISM-DETVEEN 31 32)

(LEMMA (IN-CONTEXT ((Lr-DE L LATTICE)
(EXISTS-SORE LATTICE-NAP)) (LET-BE I (IDENTITY-RAP L))

(NOTE (EXISTS-SORE LATTICE-MAP))

*(LECA (Il-CONTEXT ((ET-BE B BOOLEA-I.ATTICE)
*(EXISlTS-SORE BCOLEAI-RAP)) (LET-BK I (IDENTITY-NAP B))

(NOTE (EXISTB-SOnK BOOLBAN-Al)
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(LEffilA (IN-CONTE T ((ET-BE N BOOLEAN-RAF)
N -(FURILL ((H BOOLEAN-RAP)) (LET-BE BI (DOMAIN B))

C-> (LET-BE 92 (BRGE W))
(AND

(IS r (IN-CONTEXT
MAP-WHICH-RESPEaS-COMPLERENT) ((SUPPOSE

(IS!a (IS H MAP-VHICH-RESPECTS-JOIN))
NAP-WICH-RESPECTS-JOhM))su as

r. (IS H KAP-WHTCH-KESPECTS-COHPLEMENIT))
(IS H MAP WH1CH-RESPECTe-WEET))) (PUSH-GOLL

-' (IS H RAP-VEXCN-LESFECTS-MEET))
4 (ITNuTEXT ((ET-BE I (IN-U-SET BM)

(LEMMA (LET-BE Y (IN-U-SET B1))

(FURALL ((H BOOLEAN-EAP) (IF-CONTEXT
C-> ((ET-BE CX (COMPLEMENT Z 91)

(AND (LET-BE CY (COMPLEMENT Y 91)
is ( a (LET-BE J (JOIN al a 31))

.1 R IICH-RESPECSCOflLE~MN1) (NOTE (a (APPLY-RAP H (REST I Y 31)
a(TS 3 (COMPLERRNT
t RAP-VHICH-RESPECTS-REE)) (JOIN (COMPLEMENT

ttt(Is I MtAP-VHIC-RESPECs-JOI)))) (APPLY-wRA H )
'4 32)

- (COMPLEMENT
(APPLY-RAP H Y)
B2)

B2))))
(IN-CONTEXT ((ET-BE IX (APPLY-RAP H X))

(LET-BE BY (APPLY-NAP H 1))

(NOTE-GOAL)

(IN-CONTEXT
4 ((SUPPOSE

4 (1s N RAP-VNXC-RZSPECTS-HMfl)
(SUPPOSE
(IS N RA-VNXCN-NESPECTS-CORPLEMEN))

(PUSH-GOAL
(IS H RAP-VNICZ-RESPECTS-JOIN))

(XEf-CONTEXT ((ET-BE I (IN-U-SET 91)

(15COr.X (LET-BE Y (IN-U-SET HIM)

If. (N-COT-E al (COMPLEMENT I DI))

V (iLET-BE CY (COMPLEMENT Y B1)
(LET-BE R (REST 0X CT HIM)

(NOTE (w (APPLY-MAP H (JOIN X Y 31))
(COMPLEMET

(MEET (COMPLEMENT
J" (APPLY-RAP a X)

% to 82)
(COMPLEMENT

(APPLY-MA H Y)
B2)

S. 32)

(IN-CONTEXT ((ET-BE 91 (APPLY-UAP I W)
(LET-BE NY (APPLY-MAP I 1))

(NOnE-GOAL))

B.%
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(LEMMA (IN-CONTEXT
(FORALK ((B BOOLEAN-LATTICE)) ((LET-BE 8 BOOLEAN-LATTICE)

(IS (IDENTITY-MAP B) (LET-BE I (IDENFTITY-PUP B))
BOOL.EAN-HOMOMORPRISM))) (PUSH-GOAL

(IS I BOOLEAN-HOONOORPHISN)))
(IN-CONTEXT ((LET-BE I (IN-U-SL.T B))

(LET-BE Y (IN-U-SET B)))

(IN-CONTEXT ((ET-BE CI (COMPLEMENT I B)))

(NOTE (IS 1 MAP-WBICE-RESPECTS-COXPLEKENT)))
(1N-CONTEIT ((LET-BE J (3OIN X Y B)))
(NOTE (IS I MAP-VHICH-RESPECTS-JOIN))))

(NOTE-GOAL))

(LEMMA (U-CONTEXT ((ET-BE H BOOLEAN-BOMOMORPUISM)
(FORALL ((H BOOLEAN-HOMOMORPHISM)) (LET-BE 31 (DOMAIN 1))

(IS (IMAGE H) (LET-BE 32 (RANGE HY'
(BOOLEAN-SUBSET-DF (LET-BE S (IMAGE H))

(RANGE 0M))) (IN-CONTEXT
((Puss-GOAL

(IS S (DOOLEAN-SUBSET-OF 32))))
11-CONTEXT

((ET-BE I (MMER-OF S))
(LET-BE Y (MMER-OF S))
(WRITE-AS I (APPLY-RAP B PRE-1)

(PuE-I (IN-U-SET (DOMAIN B)
(VRITE-AS Y (APPLY-NAP H P3.E-Y)

(P3.1 (IN-U-SET (DOMAIN 10))
(IN-CONTEXT

((ET-BE PH

(OES PIE-K PIE-Y (DOMAIN B)

(1S (MEET X Y 32)

(ENIK-OF )
(IN-CONTEXT

((ET-BE PC
(COMPLEMENT PRE-1 (DOMAIN H)

(NOTE
(IS (COMPLEMENT I 32)

(MEMBER-OF )
(NOTE-GOL)

(DEFTEBE (BOOLEAN-IMAGE (E BOOLEAN-BONOMORHISH))
(IESTIICT-OIDER (RANGE H) (IMAGE B)))
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A. (LEMMA (IN-CONTEXT ((ET-BE I ROOLEAI-HOMO3PNIBM)
(FORALL M( BOOLEAN-HOMOORPISE)) (LET-BE 32 (RANGE H))

(IS (BOOLEAN-IEAGE 1) (LET-BE 52 (IMAGE H))
(BOOLEAN-SUBALGEDRA-OF (LET-BE 33 (DOOLEAN-INAGE 9)))

* (RAuGE 3))))) (NOTE (IS 33 (300LEAN-SUDALGERA-OF 32)))
(NOTE (IS 83 BOOLEAI-LATTICE))

(LEMMA (NOTE (IS 33 (STaUCTUfE-cohTLNIlu (IMAGE E))))
(FORALL ((H BOOLEAU-HONONORPHISN)) (NOTE (s(U-SET Ba) (IMAGE H))))
(IS (BOOLEAN-IMAGE H)

BOOLEAN-LATTIGE))

.4 (LEMMA
(FORAML ((H HOOLKAI-NDMONORPHISN))
(IS (BOOLEAN-IMAGE N)

CSTRUCTUAE-COITAINING,
(IMAGE 9)))))

(LEMMA
'iS(FORLL ((9 BOOLEAI-H30MOHDILPHI SH)

((U-SET (BULEAN-IRAGE H))
(IMAGE 5))))

W.

'.4

.d .
A.1

' .1%
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(LEMMA (IN-COITEIT
4(FOR ALI. ((LET-BE I BOOLEAN-BONCOIPIISM)

((I BOOLEAN-BONOMORPHISM) (LET-BE DIMAGE (BOOLEAN-IMAGE N))
(I (ZN-U-SET (BOOLFAN-IMACE R)))) (LET-BE 32 (SET!-LANGE K BINAGEM)

(COMPLENIA ) (IN-CONTEIT ((ET-BE BRGE (RANGE H))
(CO OPLENIAG 0 (LET-BE I (IN-U-SET BIMAGE))
(C ANGLEM ))))) (LET-BET YIN-U-SET BIMAGE))

(RANE H))))(NOTE (- (CGMPLEKENT I BIKACE)
(LEMMA (COMPLEMENT I BILNGE))
(FORALL -0OOPIM (VOTE (1 (011 1 Y BIMAGE)

((B BOOLEAN-OMRPS) (1011 1 Y BRIE))
a (ZN-U-SET (NOTE C-(MEET I Y BIIGE)

(BOOLEAN-IMAGE 8))) (MEET I Y BRLAIGE)
CT (ZN-U-SET(I-OTX

(BOOLKAN-TRAGE 1)))) (IN-CoNTEXT .
C.(JOIN I ((yEGA

(BOOLEAN-IMAGE 1)) (IS 32 BOOLEAN-BOORORPISN))
(OUN I Y (LET-BE EDOWIN (DOM.AIN 9))

(LARGE 8))))) (LET-BE I (Il-U-SET BDOKAIU))
(LET-BE Y (IN-U-SET BDOMAIN))

(LEMMA (LET-BE 31 (APPLY-MAP H2 U)
(FORALL (LET-BE NT (APPLY-MAP 12 Y)))

M( BOOLEAN-SOMOKORPRISM) (Il-CONTEXT
UI (Il-U-SET ((LT-BE CX (COMPLEET X BDOMAIN))

(BOOLEAN-IMAGE 9))) (LET-BE ECI (APPLY-MAP 32 CX)))
4" Y (IN-U-SET (NOTE

(BOOLEAN-IWAGS 3)))) (IS 12
.4((MEET IT MEAP-VN[ICN-USPECTS-OMPLEMENT)))

(BOOLEAN-IMAGE 3)) (Il-CONTEX
"MEET I Y ((ET-BE liX (MEET X Y BDONAIN))
(LARGE N))))) (LET-BK MX (APPLY-MAP 12 MI)))

(NOTE
(LIEMMlA (13 12 MAP-VNICS-RESPECTS-MEETM)

*(FORAI.L ((N BOOLELN-NUONMPISM)) (NTEGonL)
d (15 (SET!-3.ANGE 3 (BOOLEAN-IMAGE 8))

SOOLEAI-3ONONORPIN))

.64ON

op% . ,

.44p
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A.10 Filters and Ultrafilters

A filter in a bounded lattice L is a subset F of L which satisfies the following

conditions:

* F does not contain the least member of L.

* If x is in F then every member of L greater than x is in F.

* If x and y are in L then the meet of r and y are in L.

- If x is a member of a bounded lattice L then the filter generated by x is

---. the set of all members of L greater than or equal to x. We show that the
filter generated by x is a filter of L.

An utrafilter is a maximal filter, i.e. an ultrafilter of L is a filter of L
which is not a proper subset of any other filter of L. We show that the set
of all filters of L ordered under inclusion is an inductive order and thus by
Zorn's lemma every filter is contained in some ultrafilter. We also show that
if the join of x and y is a member of an ultrafilter F then either x is in F or
y is in F. This implies that if F is an ultrafilter in a Boolean lattice L and
x is any member of L, either x or the complement of x is a member of the
ultrafilter F.

(DEFrPE (FILTER-OF CL BOUNDED-LATTICI))
(LAMBDA ((3 (ION-EPTY-SUBSET-OF (U-SET L))))

N( (AID (EDT (IS (BOTTOM L) ( Elk-OF S)))
.Ptd (FORALL ((I (RENE-O )))

(Is-VnY ( ETE-Of-zUL-TO X L)
p, '.4 (NUD I.ER-OF )))

(FORALL ((X (HME-OF S)))
* (FtRALL (CY (ME ER-OF )))

(IS (REET I Y L)
(RENBER-OF 5)))))))

(DEFTYPE (EOI-BOTTON-EBER-OF (L BOUIDED-LATTICE))
V (LAMBDA ( (IN-U-SET L))

(NOT (w I (BOTTON L)))))

(LEMMA (IN-CONTEIT ((LET-BE L BOUIDED-LATTICE)(OAT(LBUDDLTIE)(LET-BE T (TOP L)))

(EISTS-SOE (NOTE
*. (NON-BoTTON--o L)))) (EISTS-sa
*p (NoI-Boor-usxns-oa L))))

lp.' " _ ',_ 11. ,2. "

',
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(DEFTEBJI (FILTER-031 M TED-BY
(I (NON-BOrrON-REMBER-OF L))
(L BO UND ED-LATTICE))

(TEE-SET-OF-ALL
(GREATER-OR-EQUAL-TO I L)))

(LEMMA (IN-CONTEXT
(FORML. ((ET-BE L BOUNED-LATTICE)

M( BOUNDED-LAI-rICE) (LET-BE I (NON-HOTTOM-MMNER-OF L))
(X (ION-BOTTOM-MEMBER-OF L))) (LET-BE F (fILTKR-CEER.TED-BY X L))

(IS (FILTER-GENERATED-BY I L) (PUSS-GOAL (1S F (FILTER-OF L))))
(FILTER-OF L)))) (IN-CONTEXT ((LT-BE S (U-SET L))

(LET-BE Y (MEMBER-OF F))
(NOTE

(IS F (NON-EMPTY-SUIBSET-OF (U-SET L)))))

(IN-COINTEXT ((ET-BE SOT (BOTTOM LM)
(NOTE

(NOT
(IS (BOTTOM L) (MEMBER-UF W)M)

(IN-CONEXT
((ET-BR Y (MMBER-OF M)

(LET-BE Z (GREATER-Ofl-EgUAL-TO T LM)
(NOTE (FORALL ((Y (NMER-OF FM)

(IS-EVERY
(GREATER-Ol-EQUAL-TO Y L)
(MEMBER-OF F)))

(IN-CONTEXT ((ET-BE Y (MEMER-OF F)
(LET-BE Z (MEMER-OF F)
(LET-BENM (MEET I Y W)

(NOTE (FORALL ((Y (MEMBER-OF F)
(Z (MMER-OF F)

(1S (N]EET Y1Z L)
(MBER-OF F)))

(NOTE-GOAL))

CLEM (IN-CONTEXT
(FORALL M( BOUIDED-LATTICE) ((ET-BK L SOUNDED-LATTICE)

(F (FILTER-OF L))) (LET-BE F (FILTER-OF 0)
(IS (TOP L) (FUSE-GOL

* (MEMBER-OF F)))) (IS (TOP L) (MEMBER-CF F)

(IN-CONTEXT ((ET-SE I (MEMKBER-OF F)
(LET-BE T (TOP L)

(NOTE-GOAL))

(LEMA (IN-CORTEXT ((ET-BE B BOOLEAN-LATTICE)
*(FORALL ((B BOOLEA-LATTICE) (LET-BK F (FILTER-OF B))

(F (FILTERL-OF B)) (LET-BE I (M EMS ER-OF F)
P CIU (MEMER-OF F)) (LET-BE CI (COMPLEMENT X BM)

(NOT (IS (COMPLEMENT I B) (NOTE (NOT (IS CI (MEMBER-OF 5))
(MEMBER-OF F))

6
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(DEMTPE (ULTRAFILTER-OF (L BOUNDED-UITTICE))
(MAXAL-ELEIMIT-OF

(INCL!JSION-ORDEI
(TIE-SET-OF-ALL (FILTER-OF L))

(LEMA (IN-CONTEXT ((ET-BE L BOUIDED-LATTICE)

(FORALL M( BOUNDED-LATTICE) (PUSH-GOAL

(F (ULTRAFILTER-OF LM) (IS-EVERY (ULTRAFILTER-OF L)
(IS F (FILTER-OF LM)) (FILTER-OF L)

(1-CONTEXT
((SUPPOSE

(EXISTS-SORE (ULTXAFILTER-OF LM)
(LET-BE F (ULTB.AFILTER-OF W)

(LET-BE FILTER-SET
(THE-SET-OF-ALL (FILTER-OF L))

(LET-BE FILTER-POSE?

(INCLUSION- ORDER FILTER-SET)
(NOTE-GOL)

(NOTE-GOAL))

(LEMMA (IN-CONTEXT
(FORALL MC BOUNED-LATrICE) ((ET-BE L BOUIDED-LATTICE)

(F (ULTU.AFILTER-Of L)) (PUSK-GOAL
(NOT (FORALL ((F (tJLTRLFILTER-OF LM)

(EXISTS-SOME (NOT
(AND-TYPE (EXISTS-SORE

(FILTER-OF L) (AND-TYPE
(PILOPER-SUPUSET-OFF F)))) (FILTER-OF L)

(PKOPKX-SUPEN.SET-OF F)))))))

(IN-CONTEXT
((SUPPOSE

=ISTS-SORE (ULTRAFILTER-OF LM)
(LZT-bg F (OLTRAETL?-OF LM)

(IN-CONTEXT
((SUPPOSE

(EXISTS-SOME
(AND-TYPE

(FILTER-OF L)
(PROPER-SUPELSET-OF F)

(LET-BE F2
(AND-TYPE (FILTER-OF L)

(PROPER-SL'PERSET-OF F))
* (LET-BE FILTER-SET

(TIE-SET-OF-ALL (FILTER-OF LM)
(LET-BE FILTER-POSET

(INCLUSION-OIDER FILTER-SET))
(NOTE-CONTR&DICTION))

(NOTE-GOAL)
(NOTE-GOA)

55%
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dli-cOITEXT
(FORflL ((L BCZINDED-LATTICE)) ((LET-SE L SOUNDED-LATTICE)

(IS (TEE-SET-OF-AlL (FILTER-OF L)) (LET-SE F
FAEILY-OF-SFTS))) (TSE-sn-OF-u± (FILTER-OF U))

(LET-BE S (RUlER-OF F)))
(NOTE (IS F FUlLY-OF-SETS)))
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XWe now come to the proof that every filter is contained in some ultrafilter.
" The following natural argument is taken from [Bell & Machover 771 page 136.

Let F be the set of all filters in a Boolean algebra B; F can be
partially ordered by inclusion. We will show that, with respect
to this ordering, chains in F have upper bounds in F.

Let F be a chain in F, and let C = UP. If x,y E C, then
for some D, E E F, = E D andy C= E. Since r is a chain, either
D C E or E C D; suppose the latter case obtains. Then x, y E D
and because D is a filter we have xA y G D C C. If z C D and
x < z then ipso facto z E D C C. Since 0 O D for all D E F,

., it follows that 0 0 C. Therefore C is a filter and is the required
upper bound for r in F.

4. 4
We may accordingly invoke Zorn's Lemma to conclude that,

for every filter D in B, F contains a maximal member, i.e. an
ultrafilter, which includes D.

S

A comparison of the above English proof with the Ontic proof given below
yields a predicater count loss factor of 1.3 and a word count loss factor of
1.2.

04
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(LEKKA (IN1-COUTEIT
(FOS.ALL M( BtOUNDED-LATTICE)) ((LET-BE L ROUIDED-LATCE)

(IS (IlcLusIoN-URDEl (LET-RE FILTEX-FLNIT
(TE-SET-OF-ALL (IKE-SET-OF-ALL (FILTEI-13F L)))

(FLLT~FR-OF L))) (LET-RE FILTEX-POSET
IDUCTIVE-OR.DE))) (INCLUSION-ON.D FILTEk-FANILY))

(PUSH-GOAL (IS FILTEX-POSE-r IIDUCTIVE-ORDER)))

(IN-COSTEXT ((ET-BE C (CHAIR-IN FILTER-POSET)))

(IN-COBTEXT ((LET_-SE S (MEKBER-OF c,))
(NOTE (IS C FAkILT-OF-SETS)))

(Il-CNTET
((PuS&-GOAL

* (EXISTS-SOME
* (UPPEX-BOUNO-OF C FILTEIR-POSET)))

(LET-BE tiC (FANULY-qXIDN C))

(IN-CONTEX
((PUSH-GOAL (IS DC (FITER-OF L))))

4 (I-cOT~r((U-T-SE USET (U-SET L))

(LET-BE S (MEBER-OF CM)
(NOTE

(IS DiC (NON-ExPTT-staSET-OF umE))))

(IN-CONTEXT
((ET-SE SOT (BOTTOM L)
(SUPPOSE (IS ROT (MDIBE-OF tiC)))
(VRITE-As SOT (KMIER-OF S)

(S ( ERE-OF C)
(NOTE-CONTUDicTiON))

(IN1-CONTEXT
((Puss-O0AL

(FOLALL M( (UmEl-OF tc)
CIS-LVERT

(GNLITER-O-EQUAL-TO X L)
(MEMBE-OF VWc))

(LET-SE I (rmsNBE-of tic))
(LET-BE T (GREATER-Ol-EQUAL-TO I LM)

(IN-CONTEXT ((lTE-AS I (MMER-OF S)
(S (tUKBER-OF C)))

(NOTE-GOAL))

4 cout3nuod an mexr page
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;coz:imued from previous pageCUGITR

4 ~p ((PUSH-GOAL
(FOUALL (UI (UDIBER-OF UC))

(Y (REMBER-OF UC)))
(13 (MEET I T L) (MENRER-OF UC)))

(LET-BE I (MENBEIR-OF Uc))
(LET-BE Y (MMKER-OF UC))
(LET-BE M (MEET I Y L)))

(IN-CONTEXT
((PUSH-GOAL (IS N (PlEAER-OF UCM)

(ELITE-As X ( EI-OF Si)
(SI (EERER-OF CM)

(WRITE-AS Y (MEMER-OF S2)
(S2 (MEKBER-OF C)

(I-CONTEXT
((SUPPOSE (IS Si (SUBSET-OF S2))))

(NOTE-GO1L)
(NOTE-GOAL))

.1*~ -(NOTE-GOAL))

(11FFE-GOaL)

(IN-CONTEXT ('ET-ME S (MEMBER-OF C)))
(TOTE

(IS IJC
(UpPPF-BOUND-OF c FILTER-POSET))))

(NOTE-GOAL))

(NOTE-GOAL))

CLEPOU (I-CONTET
(FORALL ((L BOUDED-UATrICE) ((LT-HE L BOtJNDD-U&TrIcE)

-~(F (FILTE-OF LM) (LET-E F (FILTER-OF L)
V(EXISTS-SOME (PUSH-GOou

(AID-TYPE (EXISTS-SOME
(ULTRAFTLTUl-OF L) (AND-lw!Z (ULTRAFILTEU-OF L)
(SUPERSET-OF F))))) (SUPEnSEr-OF F))

* (Il-CONTEXT
(ET-RE FILTER-SET

* -~~ (TE-SE-OF-ALL (FILTER-OF LM)
.FP16 .(LET-E FILTER-POSE?

.rN (IICLJSIO-ORDER FILTER-SET)
(LET-BE F2

(AID-TYPEFIT-PS)

(CREATEX-0R-EQUAL-TO F FILTEit-POSET))))
(NOTE-GOAL))

V (DEFTYPE (ULTI.AFILTER-OIFTAINING
((I-U-SET 0)

(L. BGUNDED-LATTICE))
(LAMIBDA ((F (ULTRAFILTER-OF LM)

(IS 1 (MENER-OF F))))

0~%
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(LEMMA (Il-COITEX'
(FORILL ((Er-BE L BOUNDED-LATTICE)

(( BOUNDED-LATTICE) (LET-BE I (NON-BOTT3M-NEPKBER-OF L))
U(799 -BUTTOM-NbMBER-OF W)) (PUSH-OAL

(EIISTS-SOME (FIISTS-SOME
(ULTRIFILTE.-L-CO TAINING 1 0)))) (ULIRAFILTER-CONTAINI1G I L))))

(TI-COITEXT
((LET-6E G1 (FILTER-GENERATED-BY 1 0)

(LET-BE G2 (IND-TYPE 'ULTIAFILTER-OF L)

(NOTE-GAL))) SUPERSET-OF 01)))

(LKAMA (11-CONTEXT

(FORALL ((B flOLEIU-LATTICE) ((LET-BE B BOOLEAN-LATTICE)
(I (1N-U-iET B)) (LEI-BE I (IN-U-SET W)
(yr (IN-U-SET B)) (LET-BE Y (IN-U-EET 8))

(SUPPOSE
(102 (I$ X (LESS -OR-EQUAL-TO Y W)) (NOT (IS X (LESS-OP-EQUAL-TO Y B))))
(EIISTS-SOKE CPU5.-GOAL

* (7 (ULTP.AFILTUf-CONTIING I (EXISTS ((F (ULTRkFILTER-CONTAIIINC, I B)))
BM) (NOT (IS Y (MEMBER-OF F))))))

(NOT (IS Y (KEMBER-OF F))))))) (IJ'-COITEIT

((ET-BE CI (COMPLEMENT Y B))
(LET-BE R (MEET X CT B))
(LET-BE F (ULTRIFILTER-CONTAINIEG M BM)

(NOTE- COAL))

%
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% %We now come .o the proof that if F is an ultrafilter and if xVy E F then x E F
or y E F. The following natural argument is taken from [Bell & Machover 77]

, top of page 136. case (iii)=(iv).

Suppose F is an ultrafilter of a bounded distributive lattice L
and that x V y E F. To show that x E F or y E F suppose that
x g F. It is easy to see that {z : xV z E F} is a filter which

p includes F, and so, since F is an ultrafilter, F = G. But since
x V y E F it follows that y E G and hence y E F.

tt

-, : A comparison of the above nat usral argument with the Ontic proof yields a
predicate count loss factor of 2.1 and a word count loss factor of 2.7.

'i.
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- (LEMMA (IN-CONTEIT
(FORALL ((LET-BE L (AND-TYPE

(L (AID-TYPE DISTRIBUTIVE-LTTICE
,- DISTRIBUTIVE-LATTICE BOUIDED-LATTTCE))

BOUNDED-LATTICE)) (LET-BE F (ULTRAFILTER-OF L))
(F (ULTRAFILTER-OF L)) (LET-BE I (IN-U-SET L)
(I (IN-U-SET L)) (LET-BE Y (IN-U-SET L))
C¥ (IN-U-SET L)) (SUPPOSE (IS (JOIN I Y L)

(- (IS (JOIN I Y L) (MEMBER-OF F)))

(MEMBER-OF F)) (PUSH-GOAL (OR (IS I (MEMBER-OF F))

(OR (IS I (MEMBER-Or F)) (IS Y (MEMBER-OF F)))))
(IS Y (MEMBER-OF F))))))

-V (IN-CONTEXT
((SUPPOSE (NOT (IS I (MEMBER-OF l))))

(PUSH-GOAL (IS (MEMBER-OF F))))

(IN-CONTEXT

((LT-BE 0
(THE-SET-OF-ALL (Z (IN-U-SET L)

(IS (JOIN I Z L) (KEBER-OF F)))))
;clearly y is in g
(IN-CONTEXT ((PUSH-GOAL (u F GI))

* ;this will couplet. the proof that

;I is in t

(IN-CONTEXT
((PUSH-COnL (IS G (suPnRSET-Of F)))
(LET-BE Z (MEMER-OF F))
(LET-BE J (JOIN X Z L)

(IOTE-GOAL))

(IN-CONTEXT
" ((PUSH-GOAL (IS O (FILTER-OF L))))

;since f is a maximal filter this
* ;completes the proof

(II-CONTEXT
-"- ((PUSH-GOAL

-. (ISOa
(NON-EMPTY-SUBSET-OF

(U-SET L))))
(LET-BE S (U-SET L)

, i,-t (LET-BR Z (NMEIR-OF 0)))
(NOTE-GOAL))

(I-CorTEXT ((LET-BE BOT (BOTTOM L)

(NOTE

* (NOT (IS (BOTTOM L

(MEMBER-OF r.)))))

continued on next page
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;contlnm.d from previoas page (II-COITEXT

((PUSE-GOLL
(FORALL

* ((zi (HEMER-OF 0))
(Z2 (GREATER-OR-EQUAL-TO Z1

L)))
(IS Z2 (MEMBER-OF G))))

(LET-BE Li (MEMBER-OF G))
t. (LET-BE Z2

(GREATER-O&-EQUIL-TO Z1 L))
(LET-BE J1 (JOIN I 21 L))
(LET-BE 32 (JOIN I Z2 L)))

;j2 is greater or equal to i
(NOTE-GOAL))

S(IN-CONTEIT
((PUS-GOAL

(FORALL ((21 (REMRER-OF 0))
(2 (MEBER-OF G)))

(IS (REET 2I Z2 L)
(MMNR-OF G))

9 (LET-BE Z1 (RERBER-OF G))
(LET-BE Z2 (R ER-OF 0)))

".c. (I-CONTEXT

,. ((LET-BE 31 (JOIN I Z1 L))
(LET-BE 32 (JOIN I Z2 L)))

(NOTE (IS (JOIN X (REET Z1 Z2 L) L)
(MERDER-OF F))))

(IN-CONTEXT

((ET-BE I (REST Z Z2 L)))
*"t (NOTE-GOAL)))

tJ" (NOTE-0OL))

(NOTE-GOAL))
h. (10TE-GOAL))

(NOTE-GOAL))

(LEMMA (I-CONTEXT ((LET-BE B BOOLEAN-LATTICE)
(FORALL ((B BOOLEAN-LATTICE) (LET-BE F (ULTRAFILTEU-OF B))

(F (ULTIRAFILTER-OF B)) (LET-BE I (IN-U-SET B))
(I (ZN-U-SET B))) (LET-BE C (CORPLEMENT X B)))

(OR (IS I (RMENER-OF F)) (NOTE (OR (IS I (R EBER-OF F))
(IS (COMPLEMENT X B) (IS CI (REKER-OF F)))))

(MEMBER-OF F)))))

.4'
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A.11 The Stone Representation Theorem

Finally we come to the Stone representation theorem for Boolean algebras.
The following natural definitions and natural arguments are taken from [Bell
& Machover 77] pages 141 and 142.

Let us define a field of sets to be a subalgebra of a power set
algebra. In particular, a field of subsets of a set X is a subalgebra
of the power set of X.

If B is a Boolean algebra, we denote by SB the set of all ultrafil-
ters in B.

rD

Theorem. Each Boolean algebra is isomorphic to a field of subsets
of SB.

r., Proof. Let B be a Boolean algebra. Define a mapping u: B -*

PSB by putting:

u(x) = {F E SB : x E F}

% for each x E B. Thus u(x) is the set of all ultrafilters containing
• S . a,.

We claim that u is a homomorphism of B into PSB. For
suppose that z, y E B; then, if F E SB, we have

F E u(x A y) *, x A y E F €, x E Fqy E F €* F E u(x) n u(y)

Hence u(x A y) = u(x) n u(y). Also, we have

F E u(r*) ,t x* E F @, x V F(by Thm. 3.5(iv)) €* F E SB-u(x)

Accordingly u(x*) = SB - u(x), so that, by Prob 3.3, u is a
N homomorphism.

We also note that u is one-one, for if x $ y then by Cor.
' 3.9 there is an ultrafilter F containing x, say, but not y. Then
UI F E u(x) and F V u(y), so that u(x) 5 u(y).

We have therefore shown that u is an isomorphism of B onto
the subalgebra u[B] of PSB, which proves the theorem.

"SD
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A comparison of the above natural definitions and arguments with the re-
mainder of this section yields a predicate count loss factor of 2.0 and a word
count loss factor of 1.7.

(DEFTYPS FIFtD-OF-SETS
(nITBLE-AS (DOOLEAU-SUBALGEBRA-OF

(POWER-SET-LATTICE S))
(S SET))

CLEMRA (IN-CONTEXT ((ET-BE S SET)
(EXISTS-SOME FIELD-OF-SETS)) (LET-BK P (POSER-SET-LATTICE 9))

(NOTE (EXISTS-SOME FIELD-OF-sETs))

(LEMMA (Il-COrEXT
(FORALL ((B FIELD-OF-sETS)) ((ET-BE B FIELD-OF-SETS)

(IS B BOOLEAN-LATTICE)) (WRITE-AS 9 (BOOLEAN-SUBALGESL&-OF
* (POUER-SET-LATTICE 8))

(S SET)
(LET-BE B2 CPOVER-SET-LATrICE 3))

(NOTE (IS B UOOLEA-LTTICE))

(DEFIED! (ALL-STONE-NODELS (B BOOLEAN-LATTICE))
(TEE-SET-OF-ALL (ULTRAFILISI-OF B))

(DEFTER! (TUE-STONE-RODELS-OF
(I (IN-U-SET B))
(3 BOOLEA-LATTICE))

(TUE-SET-OF-ia
(ULTZAFILTER-CONrTAIINOI x BM)

(LuMh (IN-COUTEXT
(FOUAL! ((B BOOLEAN-LATTICE) ((ET-BE B BOOLEAN-LATTICE)

(I (IN-U-SET B)) (LET-BE S (ALL-STONE-KD!1S B))
(IS (THE-STON-NoDn-oF I B) (LET-BE I (IN-U-SET B))

(SUBSET-OF (LET-BE S1 (%TIE-STONE-RODELS-OF I B))
(ALL-STONE-RODU.S B))))) (PUSH-Gail. (IS SI (SUBSET-OF 3)

* (IN-COrrinT
* ((SUPPOSE
* (EXISTS-SOME (HEUER-OF SI)))

(LET-BE F (HEMBER-OF SIM)
(NOTE-GOAL))

* (NOTE-GOLL))

(DEFTERM (STONE-MAP (B BOOLEAN-LATTICI))
(RAZE-UIP

* (PaVER- SET-LATTICE
(ALL-3TONE-MODELS B))

(TUE-RULE M( (IN-U-SET B))
(TEE-STONE-NODELS-OF I B)

*I.6
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(LEMMA (IN-COIFTEIT ((ET-BE B BOOLEAN-LATTICE)
(FORALL ((B BOOLEAN-LATTICE)) (LET-BE S (LLL-STONE-1HODELS BM)
(IS (PoWR-SET-LAnTIa (NOTE (1s (POWER-SET-LATTICE 5) POlIER-LATTICE))

(ALL-STONE-MODELS B)) (IN-CONTEXT ((ET-BE PS (POWER-SET SD)
POWER-LATTICE)) (NOTE (- (U-SET (POWER-SET-LATTICE S)) PS))

(N07E
(LEMMA (IS-EVERY

.w(FORALL ((B BOOLEAN-LATICE)) (SUBSET-OF 3)
C(U-SET (POWER-SET-LATTICE (XMBER-OF

(ALL-STONE-MODELS B)) CU-SET
(POWER-SET

(ALL-STONE-NODELS B))))) (POVER-SET-LATTICE S)))))

(LEMMA
(FORALL

((B BOOLEAN-LATTICE)
P (52 (SUBSET-OF

It (ALL-STONE-MODELS B))))
(IS S2

(MEMER-OF
(U-SET

(ALL-STONE-NOOEIJ B)))))))
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MEKKA(IN-CONTEIT

(FORLILL ((B BOCLEA-LATTICE)) ((ET-BE B BOOLEAN-LATTICE)
(IS (TEE-RULE M( (IN-U-SET B))) (LET-BE SB

(THE-SrO NE-MODELS-OF I B)) (POVER-SET-LArrICE (ALL-STOWE-MODELS B))
(RULE-BETWEEN (LET-BE 0 (STONE-KAP B))

(U-SET B) (LET-BE I (THE-RULE M( (IN-U-SET B)))
(U- SET (TXE-5TONE-MODELS-OF I B)))

(POWER-SETr-LATTICE (LET-BE I (IN-U-SET B)))
(ALL-STONE-MODELS B))))))) (IN-CONTEXT ((ET-BE EX (APPLY-RULE Rt 1))

(LET-BE USETI (U-SIT B))
(LEMMA (LET-BE USET2 (U-SET 513))

(FORALL ((B BOoLEAN-LATTICE)) (NOTE (IS Rt (RtULE-BETWEEN USETI USET2))))
(IS (STONE-MLP B) (VOTE (IS B (MAP-BETWEEN B SB)))

(HAP-BETWEEN (NOTE (IS N BOOLEAN-XAP))
B (NOTE (- (DOMAIN H) B))
(POwEI-SET-LATTICE (NOTE (m (DUGE 1) SB))

(ALL-STONE-MODELS B)NOE)))APL))A II

(LEM (TEE-STONE-MODELS-OF I B))))

(FORALL ((B BOOLEAN-LATTICE))
(1S (STONE-MAP B) HOOLEAN-MP)))

* (LEMA
(FOIALL M( BOOLEA-LrUCE))

A~. (a (DOMAIN (STONE-RAP B))
B)))

(LEMMA
(FORALL ((B BOOLEA-LATTICE))

((RANGE (STONE-MAP B))
(POIZRt-SET-LATTICE

(ALL-STONE-MODELS B)))))

(LEMMA
(FOSALL ((B BOOLEA-LATTICE)

UI (IN-U-SET B)))
((APPLY-NAP (STON-RAP B) 1)

(TRE-STONE-MODELS-OF Z B))))

c . r of
S%



All1. THE STONE REPRESENTYATION THEOREM1 3

(LUMA (IN-CONTEXT
(FOKALL ((B BOOLEAN-LATTICE)) ((ET-BE B BOOLEAN-UiTTICE)

(IS (STOlE-NIP 8) (LET-BE H (STONE-NI B))
BOOLEAN-ROMONORPISN))) (LET-BE SB

(POWER-SET-LATTICE
(LL.-STOIE-MODELS B)M

% (PUSB-GOAL
(IS R BOOLEAN-BOMDNORPHISM)))

((PUSN-COAL
(IS K EAP-VNICE-RESPECTS-NEST))

(LET-BE I (IN-U-SET B))
(LET-BE Y (IN-U-SET B))
(LET-BE I-MODELS (APPLY-NA H X))
(LET-Be Y-NODELIS (APPLY-NAP R Y))
(LET-BEEN (MEET I Y B))

(LET-BE I-MODELS (APPLY-NA H N))
(LET-BE NODEL-INTEKSECTIOU

(INTERSECTION X-NODELS Y-NODELS))

* (IN-CONTEXT
((PUsI-GOAL

(MI-NODELS MODEL-INTERSECTION))

- (Il-CONTEXT
((PUSI-GOAL

(SMODEL-INTERSELTION

(IN-CONTEXT

((SUPPOSE
(EXISTS-SOME

(MEMBER-OF MODEL-iNTMEcrEIoN))
(Lrr-B2 F

(MEMBER-OF MODEL-INTELSECTION))
(NOTE-GOAL))

(NOTE-GOAL)

- (IN-cONzTEXT

~ .1/((FUSE-GOAL

(IS N-MODELS
(SUBSET-OF MODEL-IESEcrIfll)

(IN-CONTEXT
( (SUPPOSE

(MEMBER-OF R-MODELS))
(LET-BE F (MEB1-OF N-MODELS))

(NOTE-GOAL))
(IOTE-GOAL))

(NOTE-GOAL))

continueod on next page

6A.~*
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;contiued from previous page (IN-COFrET
((PUSH-GOAL

(IS R MAP-VKICI-RESPECTS-COMPLZMMIT))
(LET-BE I (INf-U-SET B))
(LET-BE 81 (APPLY-NAP 5 V)
(LET-BE C (COMPLEMENT-OF I B))

* (LET-BE C-MODELS (APPLY-MAP 4 C)
(LET-BE ALL-MODELS (ALL-STONE-MCDELS B))

'S..(LET-BE MODEL-COMPLEMENT

(SET-DIFFERENCE iLLL-RODELS HI)))

(ID-CONTEXT
((PUSH-GOAL (- C-MODELS MODEL-COMPLEMT)))

(IN-CONTEIT
((PUSX-GOA

'.5 (IS MODEL-COMPLEMENT

(SUBSET-OF C-MODELS)
(IN-CONTEXT

((SUPPOSE
(EXISTS-SOME

(KRBER-OF MODEL-COMPLEEM))
(LET-BE F

(MMBR-OF MODEL-COMPLEIIET))
(NOTE-GOAL))

(NOTE-GOAL))

(XE-CONTEXT
((PUSI-GOAL

(IS C-MODELS
(SUST-OF MOBDEL-COMPLEMMN))))

(IN1-CoNTEXT
((SUPPOSE

(EXISTS-SOME
(AMER-OF C-MODES)))

(LET-BE F (NWEI-OF C-MODELS))
(NOTE-GOL)

(sNT-GOAL)

(IOT-GO10)

(NOTE-GOL)
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(LEMA (IN-CONTEIT ((ET-BE B BOOLEA-LATTICE)
(FOlA~lL ((B BOOLEA-LATTICE)) (LET-BE B (STONE-NAP B))

(IS (STORE-MAP B) INJEcTION))) (PUSH-GOAL (IS H INJECTION))
(IN-CONTEXT

((ET-BE MSET (MMBER-OF (IMAGE H))
(LET-BE PRE-MSET

(PILEINACE a (MAKE-SET MSET))))
* (IN-CONTEXT

((PUSHGOAL
(EXACTLY-DIE (NENBER-OF PRE-MSET))

(ET-BE I (MEMBER-OF PR.E-MSET)
(LET-BE Y (EE-OF PI#,-NSET)))

(IN-CONTEXT
((PUSH-GOAL

(IS I (LESS-OR-EQUAL-TO Y B))))
(IN-CONTEXT

((SUPPOSE
(NOT (IS I (LESS-OR-EQVAL-TO Y B))))

(LET-BE F (ULTRLFILTEI-CONTAIING X B)
(NOT (IS Y (MEMBER-OF MM))

* (NOTE-CONT BAD ICTION))
(NOTE4OIENERLALIzE -GOAL))

(lOTE-GOAL))
(NOTE-GOAL))

* -. (LEMMA (IN-CONTEXT ((ET-BE B BOOLEpA -LAITICE)
( FOLAI.L ((B BOOLEAN-LATTICE)) (LET-BE R (STONE-11AP B))

(IS (BOOLEAN-INAGE (STOKE-MAP B)) (LET-BE 22 (BOOLEAN-IMAGE B)))
FIELD-OF-SETS)) (IN-CONTEXT ((ET-SE S (ALL-STONE-MODELS B)))

(NOTE (IS B2 FIELD-OF-SETS))
(LEMMA (IN-CONTElT ((ET-BE 12 (SET!-uJ.GZ B B2)))

(FORALL ((B BOOLELAN-UTTICE))
(IS (SET!-RANGE OT

'V(STONE-NAP B) (Is 112
* ~~~?. ~~(BOOLEAN-IMAGE (STONE-MAP BM) (O A-SMliNS-EUE 2)

(BOOLEA -ISONORIISM-BETEEN (XSSSR

(BOOLEAN-MGEFID--SS
(STOWE-RAP B)))))) (ROOLEA5-LATTICE-ISOMOIPEIC-TO B))))

(LEMMA
(FORALL ((B BOOLEA-UATTICE))

(EXISTS-SOME

(AID-TYPE
FIELD-OF-SETS
(BOOLEA-LITTICE-ISOMORPHIC-TO

B))
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